واحدة من الأهداف الرئيسية لمستكشف الذرات البروتونية للمادة المظلمة (DAMPE) هي قياس الذرات النووية للأشعة كوكبية حتى عدد كبير من التي في، أو أكثر من ذلك، والتي تبقى مصدرها وانتشارها موضوعاً حارّاً في الفلك. الكشاف البلاستيكي الذي يوجد على رأس DAMPE مصمم لقياس شحنات الذرات النووية من H إلى Fe ويعمل ككشاف رفض للتمييز بين الأشعة غاما والذرات المشحونة. نقترح في هذا البحث عملية اعادة التشحين لتحسين أداء الكشاف البلاستيكي في قياس الشحنة. أساسيات نهجنا، بما في ذلك العثور على المسار، والتوحيد للكشاف البلاستيكي، وتصحيح الضعف الضوئي، وتصحيح الخفض والتساوي، يتم توصيفها بتفصيل في هذا البحث بعد وصف قصير لهيكل الكشاف ومبدأ عمله. نتائجنا تظهر أن الكشاف البلاستيكي يعمل بشكل جيد جداً وأن تقريباً جميع العناصر في الأشعة الكوكبية من H إلى Fe تم تحديدها بوضوح في طيف الشحنة.
One of the main purposes of the DArk Matter Particle Explorer (DAMPE) is to measure the cosmic ray nuclei up to several tens of TeV or beyond, whose origin and propagation remains a hot topic in astrophysics. The Plastic Scintillator Detector (PSD) on top of DAMPE is designed to measure the charges of cosmic ray nuclei from H to Fe and serves as a veto detector for discriminating gamma-rays from charged particles. We propose in this paper a charge reconstruction procedure to optimize the PSD performance in charge measurement. Essentials of our approach, including track finding, alignment of PSD, light attenuation correction, quenching and equalization correction are described detailedly in this paper after a brief description of the structure and operational principle of the PSD. Our results show that the PSD works very well and almost all the elements in cosmic rays from H to Fe are clearly identified in the charge spectrum.
The Plastic Scintillator Detector (PSD) of the DArk Matter Particle Explorer (DAMPE) is designed to measure cosmic ray charge (Z) and to act as a veto detector for gamma-ray identification. In order to fully exploit the charge identification potential of the PSD and to enhance its capability to identify the gamma ray events, we develop a PSD detector alignment method. The path length of a given track in the volume of a PSD bar is derived taking into account the shift and rotation alignment corrections. By examining energy spectra of corner-passing events and fully contained events, position shifts and rotations of all PSD bars are obtained, and found to be on average about 1mm and 0.0015 radian respectively. To validate the alignment method, we introduce the artificial shifts and rotations of PSD bars in the detector simulation. These shift and rotation parameters can be recovered successfully by the alignment procedure. As a result of the PSD alignment procedure, the charge resolution of the PSD is improved from $4%$ to $8%$ depending on the nuclei.
he DArk Matter Particle Explorer (DAMPE) is a general purposed satellite-borne high energy $gamma-$ray and cosmic ray detector, and among the scientific objectives of DAMPE are the searches for the origin of cosmic rays and an understanding of Dark Matter particles. As one of the four detectors in DAMPE, the Plastic Scintillator Detector (PSD) plays an important role in the particle charge measurement and the photons/electrons separation. The PSD has 82 modules, each consists of a long organic plastic scintillator bar and two PMTs at both ends for readout, in two layers and covers an overall active area larger than 82 cm $times$ 82 cm. It can identify the charge states for relativistic ions from H to Fe, and the detector efficiency for Z=1 particles can reach 0.9999. The PSD has been successfully launched with DAMPE on Dec. 17, 2015. In this paper, the design, the assembly, the qualification tests of the PSD and some of the performance measured on the ground have been described in detail.
The DArk Matter Particle Explorer (DAMPE) is one of the four satellites within Strategic Pioneer Research Program in Space Science of the Chinese Academy of Science (CAS). DAMPE can detect electrons, photons and ions in a wide energy range (5 GeV to 10 TeV) and ions up to iron (100GeV to 100 TeV). Plastic Scintillator Detector (PSD) is one of the four payloads in DAMPE, providing e/{gamma} separation and charge identification up to Iron. An ion beam test was carried out for the Qualification Model of PSD in CERN with 40GeV/u Argon primary beams. The Birks saturation and charge resolution of PSD were investigated.
The hybrid Tibet AS array was successfully constructed in 2014. It has 4500 m$^{2}$ underground water Cherenkov pools used as the muon detector (MD) and 789 scintillator detectors covering 36900 m$^{2}$ as the surface array. At 100 TeV, cosmic-ray background events can be rejected by approximately 99.99%, according to the full Monte Carlo (MC) simulation for $gamma$-ray observations. In order to use the muon detector efficiently, we propose to extend the surface array area to 72900 m$^{2}$ by adding 120 scintillator detectors around the current array to increase the effective detection area. A new prototype scintillator detector is developed via optimizing the detector geometry and its optical surface, by selecting the reflective material and adopting dynode readout. This detector can meet our physics requirements with a positional non-uniformity of the output charge within 10% (with reference to the center of the scintillator), time resolution FWHM of $sim$2.2 ns, and dynamic range from 1 to 500 minimum ionization particles.
The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the worlds largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above $10^{17}$ eV and to study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water-Cherenkov particle detector stations spread over 3000 km$^2$ overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km$^2$, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km$^2$ sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Auger Observatory.