Do you want to publish a course? Click here

A Method of Alignment of the Plastic Scintillator Detector of DAMPE

71   0   0.0 ( 0 )
 Added by PengXiong Ma
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Plastic Scintillator Detector (PSD) of the DArk Matter Particle Explorer (DAMPE) is designed to measure cosmic ray charge (Z) and to act as a veto detector for gamma-ray identification. In order to fully exploit the charge identification potential of the PSD and to enhance its capability to identify the gamma ray events, we develop a PSD detector alignment method. The path length of a given track in the volume of a PSD bar is derived taking into account the shift and rotation alignment corrections. By examining energy spectra of corner-passing events and fully contained events, position shifts and rotations of all PSD bars are obtained, and found to be on average about 1mm and 0.0015 radian respectively. To validate the alignment method, we introduce the artificial shifts and rotations of PSD bars in the detector simulation. These shift and rotation parameters can be recovered successfully by the alignment procedure. As a result of the PSD alignment procedure, the charge resolution of the PSD is improved from $4%$ to $8%$ depending on the nuclei.



rate research

Read More

111 - Yuhong Yu , Zhiyu Sun , Hong Su 2017
he DArk Matter Particle Explorer (DAMPE) is a general purposed satellite-borne high energy $gamma-$ray and cosmic ray detector, and among the scientific objectives of DAMPE are the searches for the origin of cosmic rays and an understanding of Dark Matter particles. As one of the four detectors in DAMPE, the Plastic Scintillator Detector (PSD) plays an important role in the particle charge measurement and the photons/electrons separation. The PSD has 82 modules, each consists of a long organic plastic scintillator bar and two PMTs at both ends for readout, in two layers and covers an overall active area larger than 82 cm $times$ 82 cm. It can identify the charge states for relativistic ions from H to Fe, and the detector efficiency for Z=1 particles can reach 0.9999. The PSD has been successfully launched with DAMPE on Dec. 17, 2015. In this paper, the design, the assembly, the qualification tests of the PSD and some of the performance measured on the ground have been described in detail.
One of the main purposes of the DArk Matter Particle Explorer (DAMPE) is to measure the cosmic ray nuclei up to several tens of TeV or beyond, whose origin and propagation remains a hot topic in astrophysics. The Plastic Scintillator Detector (PSD) o n top of DAMPE is designed to measure the charges of cosmic ray nuclei from H to Fe and serves as a veto detector for discriminating gamma-rays from charged particles. We propose in this paper a charge reconstruction procedure to optimize the PSD performance in charge measurement. Essentials of our approach, including track finding, alignment of PSD, light attenuation correction, quenching and equalization correction are described detailedly in this paper after a brief description of the structure and operational principle of the PSD. Our results show that the PSD works very well and almost all the elements in cosmic rays from H to Fe are clearly identified in the charge spectrum.
The DArk Matter Particle Explorer (DAMPE) is one of the four satellites within Strategic Pioneer Research Program in Space Science of the Chinese Academy of Science (CAS). DAMPE can detect electrons, photons and ions in a wide energy range (5 GeV to 10 TeV) and ions up to iron (100GeV to 100 TeV). Plastic Scintillator Detector (PSD) is one of the four payloads in DAMPE, providing e/{gamma} separation and charge identification up to Iron. An ion beam test was carried out for the Qualification Model of PSD in CERN with 40GeV/u Argon primary beams. The Birks saturation and charge resolution of PSD were investigated.
64 - Andreas Haungs 2019
An upgrade of the present IceCube surface array (IceTop) with scintillation detectors and possibly radio antennas is foreseen. The enhanced array will calibrate the impact of snow accumulation on the reconstruction of cosmic-ray showers detected by IceTop as well as improve the veto capabilities of the surface array. In addition, such a hybrid surface array of radio antennas, scintillators and Cherenkov tanks will enable a number of complementary science targets for IceCube such as enhanced accuracy to mass composition of cosmic rays, search for PeV photons from the Galactic Center, or more thorough tests of the hadronic interaction models. Two prototype stations with 7 scintillation detectors each have been already deployed at the South Pole in January 2018. These R&D studies provide a window of opportunity to integrate radio antennas with minimal effort.
80 - Y. Zhang , Q.-B. Gou , H. Cai 2017
The hybrid Tibet AS array was successfully constructed in 2014. It has 4500 m$^{2}$ underground water Cherenkov pools used as the muon detector (MD) and 789 scintillator detectors covering 36900 m$^{2}$ as the surface array. At 100 TeV, cosmic-ray background events can be rejected by approximately 99.99%, according to the full Monte Carlo (MC) simulation for $gamma$-ray observations. In order to use the muon detector efficiently, we propose to extend the surface array area to 72900 m$^{2}$ by adding 120 scintillator detectors around the current array to increase the effective detection area. A new prototype scintillator detector is developed via optimizing the detector geometry and its optical surface, by selecting the reflective material and adopting dynode readout. This detector can meet our physics requirements with a positional non-uniformity of the output charge within 10% (with reference to the center of the scintillator), time resolution FWHM of $sim$2.2 ns, and dynamic range from 1 to 500 minimum ionization particles.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا