Do you want to publish a course? Click here

Loop corrections in spin models through density consistency

66   0   0.0 ( 0 )
 Added by Giovanni Catania
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Computing marginal distributions of discrete or semidiscrete Markov random fields (MRFs) is a fundamental, generally intractable problem with a vast number of applications in virtually all fields of science. We present a new family of computational schemes to approximately calculate the marginals of discrete MRFs. This method shares some desirable properties with belief propagation, in particular, providing exact marginals on acyclic graphs, but it differs with the latter in that it includes some loop corrections; i.e., it takes into account correlations coming from all cycles in the factor graph. It is also similar to the adaptive Thouless-Anderson-Palmer method, but it differs with the latter in that the consistency is not on the first two moments of the distribution but rather on the value of its density on a subset of values. The results on finite-dimensional Isinglike models show a significant improvement with respect to the Bethe-Peierls (tree) approximation in all cases and with respect to the plaquette cluster variational method approximation in many cases. In particular, for the critical inverse temperature $beta_{c}$ of the homogeneous hypercubic lattice, the expansion of $left(dbeta_{c}right)^{-1}$ around $d=infty$ of the proposed scheme is exact up to the $d^{-4}$ order, whereas the two latter are exact only up to the $d^{-2}$ order.



rate research

Read More

304 - H Chamati , S Romano 2007
The present paper considers some classical ferromagnetic lattice--gas models, consisting of particles that carry $n$--component spins ($n=2,3$) and associated with a $D$--dimensional lattice ($D=2,3$); each site can host one particle at most, thus implicitly allowing for hard--core repulsion; the pair interaction, restricted to nearest neighbors, is ferromagnetic, and site occupation is also controlled by the chemical potential $mu$. The models had previously been investigated by Mean Field and Two--Site Cluster treatments (when D=3), as well as Grand--Canonical Monte Carlo simulation in the case $mu=0$, for both D=2 and D=3; the obtained results showed the same kind of critical behaviour as the one known for their saturated lattice counterparts, corresponding to one particle per site. Here we addressed by Grand--Canonical Monte Carlo simulation the case where the chemical potential is negative and sufficiently large in magnitude; the value $mu=-D/2$ was chosen for each of the four previously investigated counterparts, together with $mu=-3D/4$ in an additional instance. We mostly found evidence of first order transitions, both for D=2 and D=3, and quantitatively characterized their behaviour. Comparisons are also made with recent experimental results.
We investigate the generalized p-spin models that contain arbitrary diagonal operators U with no reflection symmetry. We derive general equations that give an opportunity to uncover the behavior of the system near the glass transition at different (continuous) p. The quadrupole glass with J=1 is considered as an illustrating example. It is shown that the crossover from continuous to discontinuous glass transition to one-step replica breaking solution takes place at p=3.3 for this model. For p <2+Delta p, where Delta p= 0.5 is a finite value, stable 1RSB-solution disappears. This behaviour is strongly different from that of the p-spin Ising glass model.
Recently, generative machine-learning models have gained popularity in physics, driven by the goal of improving the efficiency of Markov chain Monte Carlo techniques and of exploring their potential in capturing experimental data distributions. Motivated by their ability to generate images that look realistic to the human eye, we here study generative adversarial networks (GANs) as tools to learn the distribution of spin configurations and to generate samples, conditioned on external tuning parameters, such as temperature. We propose ways to efficiently represent the physical states, e.g., by exploiting symmetries, and to minimize the correlations between generated samples. We present a detailed evaluation of the various modifications, using the two-dimensional XY model as an example, and find considerable improvements in our proposed implicit generative model. It is also shown that the model can reliably generate samples in the vicinity of the phase transition, even when it has not been trained in the critical region. On top of using the samples generated by the model to capture the phase transition via evaluation of observables, we show how the model itself can be employed as an unsupervised indicator of transitions, by constructing measures of the models susceptibility to changes in tuning parameters.
We investigate and contrast, via entropic sampling based on the Wang-Landau algorithm, the effects of quenched bond randomness on the critical behavior of two Ising spin models in 2D. The random bond version of the superantiferromagnetic (SAF) square model with nearest- and next-nearest-neighbor competing interactions and the corresponding version of the simple Ising model are studied and their general universality aspects are inspected by a detailed finite-size scaling (FSS) analysis. We find that, the random bond SAF model obeys weak universality, hyperscaling, and exhibits a strong saturating behavior of the specific heat due to the competing nature of interactions. On the other hand, for the random Ising model we encounter some difficulties for a definite discrimination between the two well-known scenarios of the logarithmic corrections versus the weak universality. Yet, a careful FSS analysis of our data favors the field-theoretically predicted logarithmic corrections.
326 - N G Fytas , A Malakis 2008
We investigate and contrast, via the Wang-Landau (WL) algorithm, the effects of quenched bond randomness on the self-averaging properties of two Ising spin models in 2d. The random bond version of the superantiferromagnetic (SAF) square model with nearest- and next-nearest-neighbor competing interactions and the corresponding version of the simple ferromagnetic Ising model are studied. We find that, the random bond SAF model shows a strong violation of self-averaging, much stronger than that observed in the case of the random bond Ising model. Our analysis of the asymptotic scaling behavior of the variance of the distribution of the sample-dependent pseudocritical temperatures is found to be consistent with the renormalization group prediction of Aharony and Harris. Using this alternative approach, we find estimates of the correlation length exponent $ u$ in agreement with results obtained from the usual finite-size scaling (FSS) methodology.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا