Do you want to publish a course? Click here

Compact star-forming galaxies preferentially quenched to become PSBs in $z<1$ clusters

74   0   0.0 ( 0 )
 Added by Miguel Socolovsky
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyse the structure of galaxies with high specific star formation rate (SSFR) in cluster and field environments in the redshift range $0.5<z<1.0$. Recent studies have shown that these galaxies are strongly depleted in dense environments due to rapid environmental quenching, giving rise to post-starburst galaxies (PSBs). We use effective radii and Sersic indices as tracers of galaxy structure, determined using imaging from the UKIDSS Ultra Deep Survey (UDS). We find that the high-SSFR galaxies that survive into the cluster environment have, on average, larger effective radii than those in the field. We suggest that this trend is likely to be driven by the most compact star-forming galaxies being preferentially quenched in dense environments. We also show that the PSBs in clusters have stellar masses and effective radii that are similar to the missing compact star-forming population, suggesting that these PSBs are the result of size-dependent quenching. We propose that both strong stellar feedback and the stripping of the extended halo act together to preferentially and rapidly quench the compact and low-mass star-forming systems in clusters to produce PSBs. We test this scenario using the stacked spectra of 124 high-SSFR galaxies, showing that more compact galaxies are more likely to host outflows. We conclude that a combination of environmental and secular processes is the most likely explanation for the appearance of PSBs in galaxy clusters.



rate research

Read More

We present a observational study of the dark matter fraction in 225 rotation supported star-forming galaxies at $zapprox 0.9$ having stellar mass range: $ 9.0 leq log(M_* mathrm{M_odot}) leq 11.0$ and star formation rate: $0.49 leq log left(SFR mathrm{[M_{odot} yr^{-1}]} right) leq 1.77$. This is a sub sample of KMOS redshift one spectroscopic survey (KROSS) previously studied by citet{GS20}. The stellar masses ($M_*$) of these objects were previously estimated using mass-to-light ratios derived from fitting the spectral energy distribution of the galaxies. Star formation rates were derived from the H$_alpha$ luminosities. The total gas masses ($M_{gas}$) are determined by scaling relations of molecular and atomic gas citep[][respectively] {Tacconi2018, Lagos2011}. The dynamical masses ($M_{dyn}$) are directly derived from the rotation curves (RCs) at different scale lengths (effective radius: $R_e$, $sim 2 R_e$ and $sim 3 R_e$) and then the dark matter fractions ($f_{ DM }=1-M_{bar}/M_{dyn}$) at these radii are calculated. We report that at $zsim 1$ only a small fraction ($sim 5%$) of our sample has a low ($< 20%$) DM fraction within $sim$ 2-3 $R_e$. The majority ($> 72%$) of SFGs in our sample have dark matter dominated outer disks ($sim 5-10$ kpc) in agreement with local SFGs. Moreover, we find a large scatter in the fraction of dark matter at a given stellar mass (or circular velocity) with respect to local SFGs, suggesting that galaxies at $z sim 1$, a) span a wide range of stages in the formation of stellar disks, b) have diverse DM halo properties coupled with baryons.
We use the data for the Hbeta emission-line, far-ultraviolet (FUV) and mid-infrared 22 micron continuum luminosities to estimate star formation rates <SFR> averaged over the galaxy lifetime for a sample of about 14000 bursting compact star-forming galaxies (CSFGs) selected from the Data Release 12 (DR12) of the Sloan Digital Sky Survey (SDSS). The average coefficient linking <SFR> and the star formation rate SFR_0 derived from the Hbeta luminosity at zero starburst age is found to be 0.04. We compare <SFR>s with some commonly used SFRs which are derived adopting a continuous star formation during a period of ~100 Myr, and find that the latter ones are 2-3 times higher. It is shown that the relations between SFRs derived using a geometric mean of two star-formation indicators in the UV and IR ranges and reduced to zero starburst age have considerably lower dispersion compared to those with single star-formation indicators. We suggest that our relations for <SFR> determination are more appropriate for CSFGs because they take into account a proper temporal evolution of their luminosities. On the other hand, we show that commonly used SFR relations can be applied for approximate estimation within a factor of ~2 of the <SFR> averaged over the lifetime of the bursting compact galaxy.
Early quiescent galaxies at z~2 are known to be remarkably compact compared to their nearby counterparts. Possible progenitors of these systems include galaxies that are structurally similar, but are still rapidly forming stars. Here, we present Karl G. Jansky Very Large Array (VLA) observations of the CO(1-0) line towards three such compact, star-forming galaxies at z~2.3, significantly detecting one. The VLA observations indicate baryonic gas fractions >~5 times lower and gas depletion times >~10 times shorter than normal, extended massive star-forming galaxies at these redshifts. At their current star formation rates, all three objects will deplete their gas reservoirs within 100Myr. These objects are among the most gas-poor objects observed at z>2, and are outliers from standard gas scaling relations, a result which remains true regardless of assumptions about the CO-H2 conversion factor. Our observations are consistent with the idea that compact, star-forming galaxies are in a rapid state of transition to quiescence in tandem with the build-up of the z~2 quenched population. In the detected compact galaxy, we see no evidence of rotation or that the CO-emitting gas is spatially extended relative to the stellar light. This casts doubt on recent suggestions that the gas in these compact galaxies is rotating and significantly extended compared to the stars. Instead, we suggest that, at least for this object, the gas is centrally concentrated, and only traces a small fraction of the total galaxy dynamical mass.
Recent simulation studies suggest that the compaction of star-forming galaxies (SFGs) at high redshift might be a critical process, during which the central bulge is being rapidly built, followed by quenching of the star formation. To explore dust properties of SFGs with compact morphology, we investigate the dependence of dust temperature, $T_{rm{dust}}$, on their size and star formation activity, using a sample of massive SFGs with $log (M_{ast}/M_{odot}) > 10$ at $1 < z < 3$, drawn from the 3D-{it HST}/CANDELS database in combination with deep {it Herschel} observations. $T_{rm{dust}}$ is derived via fitting the mid-to-far-infrared photometry with a mid-infrared power law and a far-infrared modified blackbody. We find that both extended and compact SFGs generally follow a similar $T_{rm{dust}}-z$ evolutionary track as that of the main-sequence galaxies. The compact SFGs seem to share similar dust temperature with extended SFGs. Despite the frequent occurrence of AGNs in compact SFGs, we do not observe any effect on dust caused by the presence of AGN in these galaxies during the compaction. Our results disfavor different ISM properties between compact and extended SFGs, suggesting that a rapid and violet compaction process might be not necessary for the formation of compact SFGs.
186 - Etsuko Mieda 2016
We present results from IROCKS (Intermediate Redshift OSIRIS Chemo-Kinematic Survey) for sixteen z~1 and one z~1.4 star-forming galaxies. All galaxies were observed with OSIRIS with the laser guide star adaptive optics system at Keck Observatory. We use rest-frame nebular Ha emission lines to trace morphologies and kinematics of ionized gas in star-forming galaxies on sub-kiloparsec physical scales. We observe elevated velocity dispersions (sigma > 50 km/s) seen in z > 1.5 galaxies persist at z~1 in the integrated galaxies. Using an inclined disk model and the ratio of v/sigma, we find that 1/3 of the z~1 sample are disk candidates while the other 2/3 of the sample are dominated by merger-like and irregular sources. We find that including extra attenuation towards HII regions derived from stellar population synthesis modeling brings star formation rates (SFR) using Ha and stellar population fit into a better agreement. We explore properties of compact Ha sub-component, or clump, at z~1 and find that they follow a similar size-luminosity relation as local HII regions but are scaled-up by an order of magnitude with higher luminosities and sizes. Comparing the z~1 clumps to other high-redshift clump studies, we determine that the clump SFR surface density evolves as a function of redshift. This may imply clump formation is directly related to the gas fraction in these systems and support disk fragmentation as their formation mechanism since gas fraction scales with redshift.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا