Do you want to publish a course? Click here

Low Gas Fractions Connect Compact Star-Forming Galaxies to their z ~ 2 Quiescent Descendants

162   0   0.0 ( 0 )
 Added by Justin Spilker
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Early quiescent galaxies at z~2 are known to be remarkably compact compared to their nearby counterparts. Possible progenitors of these systems include galaxies that are structurally similar, but are still rapidly forming stars. Here, we present Karl G. Jansky Very Large Array (VLA) observations of the CO(1-0) line towards three such compact, star-forming galaxies at z~2.3, significantly detecting one. The VLA observations indicate baryonic gas fractions >~5 times lower and gas depletion times >~10 times shorter than normal, extended massive star-forming galaxies at these redshifts. At their current star formation rates, all three objects will deplete their gas reservoirs within 100Myr. These objects are among the most gas-poor objects observed at z>2, and are outliers from standard gas scaling relations, a result which remains true regardless of assumptions about the CO-H2 conversion factor. Our observations are consistent with the idea that compact, star-forming galaxies are in a rapid state of transition to quiescence in tandem with the build-up of the z~2 quenched population. In the detected compact galaxy, we see no evidence of rotation or that the CO-emitting gas is spatially extended relative to the stellar light. This casts doubt on recent suggestions that the gas in these compact galaxies is rotating and significantly extended compared to the stars. Instead, we suggest that, at least for this object, the gas is centrally concentrated, and only traces a small fraction of the total galaxy dynamical mass.



rate research

Read More

We study how star formation is regulated in low-mass field dwarf galaxies ($10^5 leq M_{star} leq 10^6 , text{M}_{odot}$), using cosmological high-resolution ($3 , text{pc}$) hydrodynamical simulations. Cosmic reionization quenches star formation in all our simulated dwarfs, but three galaxies with final dynamical masses of $3 times 10^{9} ,text{M}_{odot}$ are subsequently able to replenish their interstellar medium by slowly accreting gas. Two of these galaxies re-ignite and sustain star formation until the present day at an average rate of $10^{-5} , text{M}_{odot} , text{yr}^{-1}$, highly reminiscent of observed low-mass star-forming dwarf irregulars such as Leo T. The resumption of star formation is delayed by several billion years due to residual feedback from stellar winds and Type Ia supernovae; even at $z=0$, the third galaxy remains in a temporary equilibrium with a large gas content but without any ongoing star formation. Using the genetic modification approach, we create an alternative mass growth history for this gas-rich quiescent dwarf and show how a small $(0.2,mathrm{dex})$ increase in dynamical mass can overcome residual stellar feedback, re-igniting star formation. The interaction between feedback and mass build-up produces a diversity in the stellar ages and gas content of low-mass dwarfs, which will be probed by combining next-generation HI and imaging surveys.
169 - G. Barro , J. R. Trump , D. C. Koo 2014
We present Keck-I MOSFIRE near-infrared spectroscopy for a sample of 13 compact star-forming galaxies (SFGs) at redshift $2leq z leq2.5$ with star formation rates of SFR$sim$100M$_{odot}$ y$^{-1}$ and masses of log(M/M$_{odot}$)$sim10.8$. Their high integrated gas velocity dispersions of $sigma_{rm{int}}$=230$^{+40}_{-30}$ km s$^{-1}$, as measured from emission lines of H$_{alpha}$ and [OIII], and the resultant M$_{star}-sigma_{rm{int}}$ relation and M$_{star}$$-$M$_{rm{dyn}}$ all match well to those of compact quiescent galaxies at $zsim2$, as measured from stellar absorption lines. Since log(M$_{star}$/M$_{rm{dyn}}$)$=-0.06pm0.2$ dex, these compact SFGs appear to be dynamically relaxed and more evolved, i.e., more depleted in gas and dark matter ($<$13$^{+17}_{-13}$%) than their non-compact SFG counterparts at the same epoch. Without infusion of external gas, depletion timescales are short, less than $sim$300 Myr. This discovery adds another link to our new dynamical chain of evidence that compact SFGs at $zgtrsim2$ are already losing gas to become the immediate progenitors of compact quiescent galaxies by $zsim2$.
While dust is a major player in galaxy evolution, its relationship with gas and stellar radiation in the early universe is still not well understood. We combine 3D-HST emission line fluxes with far-UV through far-IR photometry in a sample of 669 emission-line galaxies (ELGs) between 1.2 < z < 1.9 and use the MCSED spectral energy distribution fitting code to constrain the galaxies physical parameters, such as their star formation rates (SFRs), stellar masses, and dust masses. We find that the assumption of energy balance between dust attenuation and emission is likely unreasonable in many cases. We highlight a relationship between the mass-specific star formation rate (sSFR), stellar mass, and dust mass, although its exact form is still unclear. Finally, a stacking of H$alpha$ and H$beta$ fluxes shows that nebular attenuation increases with stellar mass and SFR for IR-bright ELGs.
We study the evolution of the core (r<1 kpc) and effective (r<r_e) stellar-mass surface densities, in star-forming and quiescent galaxies. Since z=3, both populations occupy distinct, linear relations in log(Sigma_e) and log(Sigma_1) vs. log(M). These structural relations exhibit slopes and scatter that remain almost constant with time while their normalizations decline. For SFGs, the normalization declines by less than a factor of 2 from z=3, in both Sigma_e and Sigma_1. Such mild declines suggest that SFGs build dense cores by growing along these relations. We define this evolution as the structural main sequence (Sigma-MS). Quiescent galaxies follow different relations (Sigma^Q_e, Sigma^Q_1) off the Sigma-MS by having higher densities than SFGs of the same mass and redshift. The normalization of Sigma^Q_e declines by a factor of 10 since z=3, but only a factor of 2 in Sigma^Q_1. Thus, the common denominator for quiescent galaxies at all redshifts is the presence of a dense stellar core, and the formation of such cores in SFGs is the main requirement for quenching. Expressed in 2D as deviations off the SFR-MS and off Sigma^Q_1 at each redshift, the distribution of massive galaxies forms a universal, L-shaped sequence that relates two fundamental physical processes: compaction and quenching. Compaction is a process of substantial core-growth in SFGs relative to that in the Sigma-MS. This process increases the core-to-total mass and Sersic index, thereby, making compact SFGs. Quenching occurs once compact SFGs reach a maximum central density above Sigma^Q_1 > 9.5 M_sun/kpc^2. This threshold provides the most effective selection criterion to identify the star-forming progenitors of quiescent galaxies at all redshifts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا