No Arabic abstract
Charge density waves (CDWs) are symmetry-broken ground states that commonly occur in low-dimensional metals due to strong electron-electron and/or electron-phonon coupling. The non-equilibrium carrier distribution established via photodoping with femtosecond laser pulses readily quenches these ground states and induces an ultrafast insulator-to-metal phase transition. To date, CDW melting has been mainly investigated in the single-photon and tunneling regimes, while the intermediate multi-photon regime has received little attention. Here we excite one-dimensional indium wires with a CDW gap of ~300meV with mid-infrared pulses at 190meV with MV/cm field strength and probe the transient electronic structure with time- and angle-resolved photoemission spectroscopy (tr-ARPES). We find that the CDW gap is filled on a timescale short compared to our temporal resolution of 300fs and that the phase transition is completed within ~1ps. Supported by a minimal theoretical model we attribute our findings to multi-photon absorption across the CDW gap.
We study the Holstein model of spinless fermions, which at half-filling exhibits a quantum phase transition from a metallic Tomonaga-Luttinger liquid phase to an insulating charge-density-wave (CDW) phase at a critical electron-phonon coupling strength. In our work, we focus on the real-time evolution starting from two different types of initial states that are CDW ordered: (i) ideal CDW states with and without additional phonons in the system and (ii) correlated ground states in the CDW phase. We identify the mechanism for CDW melting in the ensuing real-time dynamics and show that it strongly depends on the type of initial state. We focus on the far-from-equilibrium regime and emphasize the role of electron-phonon coupling rather than dominant electronic correlations, thus complementing a previous study of photo-induced CDW melting [H. Hashimoto and S. Ishihara, Phys. Rev. B 96, 035154 (2017)]. The numerical simulations are performed by means of matrix-product-state based methods with a local basis optimization (LBO). Within these techniques, one rotates the local (bosonic) Hilbert spaces adaptively into an optimized basis that can then be truncated while still maintaining a high precision. In this work, we extend the time-evolving block decimation (TEBD) algorithm with LBO, previously applied to single-polaron dynamics, to a half-filled system. We demonstrate that in some parameter regimes, a conventional TEBD method without LBO would fail. Furthermore, we introduce and use a ground-state density-matrix renormalization group method for electron-phonon systems using local basis optimization. In our examples, we account for up to $M_{rm ph} = 40$ bare phonons per site by working with $O(10)$ optimal phonon modes.
Unconventional quasiparticle excitations in condensed matter systems have become one of the most important research frontiers. Beyond two- and fourfold degenerate Weyl and Dirac fermions, three-, six- and eightfold symmetry protected degeneracies have been predicted however remain challenging to realize in solid state materials. Here, charge density wave compound TaTe4 is proposed to hold eightfold fermionic excitation and Dirac point in energy bands. High quality TaTe4 single crystals are prepared, where the charge density wave is revealed by directly imaging the atomic structure and a pseudogap of about 45 meV on the surface. Shubnikov de-Haas oscillations of TaTe4 are consistent with band structure calculation. Scanning tunneling microscopy reveals atomic step edge states on the surface of TaTe4. This work uncovers that charge density wave is able to induce new topological phases and sheds new light on the novel excitations in condensed matter materials.
Low dimensional systems with a vanishing band-gap and a large electron-hole interaction have been proposed to be unstable towards exciton formation. As the exciton binding energy increases in low dimension, conventional wisdom suggests that excitonic insulators should be more stable in 2D than in 3D. Here we study the effects of the electron-hole interaction and anharmonicity in single-layer TiSe2. We find that, contrary to the bulk case and to the generally accepted picture, the electron-hole exchange interaction is much smaller in 2D than in 3D and it has negligible effects on phonon spectra. By calculating anharmonic phonon spectra within the stochastic self-consistent harmonic approximation, we obtain TCDW = 440K for an isolated and undoped single-layer and TCDW = 364K for an electron-doping n = 4.6 x 10^13 cm^{-2} , close to the experimental result of 200-280K on supported samples. Our work demonstrates that anharmonicity and doping melt the charge density wave in single-layer TiSe2.
We report experimental evidence of charge density wave (CDW) transition in monolayer 1T-VTe$_2$ film. 4$times$4 reconstruction peaks are observed by low energy electron diffraction below the transition temperature $T_{CDW}$ = 186 K. Angle-resolved photoemission spectroscopy measurements reveal arc-like pockets with anisotropic CDW gaps up to 50 meV. The anisotropic CDW gap is attributed to the imperfect nesting of the CDW wave vector, and first-principles calculations reveal phonon softening at the same vector, suggesting the important roles of Fermi surface nesting and electron-phonon interaction in the CDW mechanism.
Ta2NiSe7 is a quasi-one-dimensional (quasi-1D) transition-metal chalcogenide with Ta and Ni chain structure. An incommensurate charge-density wave (CDW) in this quasi-1D structure was well studied previously using tunnelling spectrum, X-ray and electron diffraction, whereas its transport property and the relation to the underlying electronic states remain to be explored. Here we report our results of magnetoresistance (MR) on Ta2NiSe7. A breakdown of the Kohlers rule is found upon entering the CDW state. Concomitantly, a clear change of curvature in the field dependence of MR is observed. We show that the curvature change is well described by two-band orbital MR, with the hole density being strongly suppressed in the CDW state, indicating that the $p$ orbitals from Se atoms dominate the change in transport through the CDW transition.