Do you want to publish a course? Click here

Evidence of charge density wave with anisotropic gap in monolayer VTe$_2$ film

271   0   0.0 ( 0 )
 Added by Yuan Wang
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report experimental evidence of charge density wave (CDW) transition in monolayer 1T-VTe$_2$ film. 4$times$4 reconstruction peaks are observed by low energy electron diffraction below the transition temperature $T_{CDW}$ = 186 K. Angle-resolved photoemission spectroscopy measurements reveal arc-like pockets with anisotropic CDW gaps up to 50 meV. The anisotropic CDW gap is attributed to the imperfect nesting of the CDW wave vector, and first-principles calculations reveal phonon softening at the same vector, suggesting the important roles of Fermi surface nesting and electron-phonon interaction in the CDW mechanism.



rate research

Read More

In the standard model of charge density wave (CDW) transitions, the displacement along a single phonon mode lowers the total electronic energy by creating a gap at the Fermi level, making the CDW a metal--insulator transition. Here, using scanning tunneling microscopy and spectroscopy and ab initio calculations, we show that VS$_2$ realizes a CDW which stands out of this standard model. There is a full CDW gap residing in the unoccupied states of monolayer VS$_2$. At the Fermi level, the CDW induces a topological metal-metal (Lifshitz) transition. Non-linear coupling of transverse and longitudinal phonons is essential for the formation of the CDW and the full gap above the Fermi level. Additionally, x-ray magnetic circular dichroism reveals the absence of net magnetization in this phase, pointing to coexisting charge and spin density waves in the ground state.
In this paper, the completed investigation of a possible superconducting phase in monolayer indium selenide is determined using first-principles calculations for both the hole and electron doping systems. The hole-doped dependence of the Fermi surface is exclusively fundamental for monolayer InSe. It leads to the extensive modification of the Fermi surface from six separated pockets to two pockets by increasing the hole densities. For low hole doping levels of the system, below the Lifshitz transition point, superconductive critical temperatures $T_c sim 55-75$ K are obtained within anisotropic Eliashberg theory depending on varying amounts of the Coulomb potential from 0.2 to 0.1. However, for some hole doping above the Lifshitz transition point, the combination of the temperature dependence of the bare susceptibility and the strong electron-phonon interaction gives rise to a charge density wave that emerged at a temperature far above the corresponding $T_c$. Having included non-adiabatic effects, we could carefully analyze conditions for which either a superconductive or charge density wave phase occurs in the system. In addition, monolayer InSe becomes dynamically stable by including non-adiabatic effects for different carrier concentrations at room temperature.
Recently fabricated InSe monolayers exhibit remarkable characteristics that indicate the potential of this material to host a number of many-body phenomena. Here, we consistently describe collective electronic effects in hole-doped InSe monolayers using advanced many-body techniques. To this end, we derive a realistic electronic-structure model from first principles that takes into account the most important characteristics of this material, including a flat band with prominent van Hove singularities in the electronic spectrum, strong electron-phonon coupling, and weakly-screened long-ranged Coulomb interactions. We calculate the temperature-dependent phase diagram as a function of band filling and observe that this system is in a regime with coexisting charge density wave and ferromagnetic instabilities that are driven by strong electronic Coulomb correlations. This regime can be achieved at realistic doping levels and high enough temperatures, and can be verified experimentally. We find that the electron-phonon interaction does not play a crucial role in these effects, effectively suppressing the local Coulomb interaction without changing the qualitative physical picture.
Despite the progress made in successful prediction of many classes of weakly-correlated topological materials, it is not clear how a topological order can emerge from interacting orders and whether or not a charge ordered topological state can exist in a two-dimensional (2D) material. Here, through first-principles modeling and analysis, we identify a 2$times$2 charge density wave (CDW) phase in monolayer $2H$-NbSe$_2$ that harbors coexisting quantum spin Hall (QSH) insulator, topological crystalline insulator (TCI) and topological nodal line (TNL) semimetal states. The topology in monolayer NbSe$_2$ is driven by the formation of the CDW and the associated symmetry-breaking periodic lattice distortions and not via a pre-existing topology. Our finding of an emergent triple-topological state in monolayer $2H$-NbSe$_2$ will offer novel possibilities for exploring connections between different topologies and a unique materials platform for controllable CDW-induced topological states for potential applications in quantum electronics and spintronics and Majorana-based quantum computing.
A charge density wave (CDW) of a nonzero ordering vector $mathbf{q}$ couple electronic states at $mathbf{k}$ and $mathbf{k}+mathbf{q}$ statically, giving rise to a reduced Brillouin zone (RBZ) due to the band folding effect. Its structure, in terms of an irreducible representation of the little group of $mathbf{q}$, would change the symmetry of the system and electronic structure accompanying possible change of band inversion, offering a chance of the topological phase transition. Monolayer 1textit{T}-TiSe$_2$ is investigated for it shows an unconventional CDW phase having a triple-$q$ $M_1^-$ structure. Moreover, the coupling between the triple-$q$ component of the $M_1^-$ CDW will inevitably produce a small $M_1^+$ CDW. The CDW yields a band inversion in 1textit{T}-TiSe$_2$ but different types of CDW can affect the electronic structure and system topology differently. The impact of CDW of different types was studied by utilizing a symmetrization-antisymmetrization technique to extract the $M_1^-$ and $M_1^+$ CDW contributions in the DFT-based tight-binding model and study their effects. The results are consistent with the parity consideration, improving understanding of topology for a CDW system with and without parity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا