Do you want to publish a course? Click here

On Number Rigidity for Pfaffian Point Processes

104   0   0.0 ( 0 )
 Added by Yanqi Qiu
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Our first result states that the orthogonal and symplectic Bessel processes are rigid in the sense of Ghosh and Peres. Our argument in the Bessel case proceeds by an estimate of the variance of additive statistics in the spirit of Ghosh and Peres. Second, a sufficient condition for number rigidity of stationary Pfaffian processes, relying on the Kolmogorov criterion for interpolation of stationary processes and applicable, in particular, to pfaffian sine-processes, is given in terms of the asymptotics of the spectral measure for additive statistics.



rate research

Read More

For a Pfaffian point process we show that its Palm measures, its normalised compositions with multiplicative functionals, and its conditional measures with respect to fixing the configuration in a bounded subset are Pfaffian point processes whose kernels we find explicitly.
We consider a random walk on a homogeneous Poisson point process with energy marks. The jump rates decay exponentially in the A-power of the jump length and depend on the energy marks via a Boltzmann--like factor. The case A=1 corresponds to the phonon-induced Mott variable range hopping in disordered solids in the regime of strong Anderson localization. We prove that for almost every realization of the marked process, the diffusively rescaled random walk, with arbitrary start point, converges to a Brownian motion whose diffusion matrix is positive definite, and independent of the environment. Finally, we extend the above result to other point processes including diluted lattices.
273 - Thomas Richthammer 2007
The conservation of translation as a symmetry in two-dimensional systems with interaction is a classical subject of statistical mechanics. Here we establish such a result for Gibbsian particle systems with two-body interaction, where the interesting cases of singular, hard-core and discontinuous interaction are included. We start with the special case of pure hard core repulsion in order to show how to treat hard cores in general.
107 - Yacin Ameur , Sung-Soo Byun 2021
We study the distribution of eigenvalues of almost-Hermitian random matrices associated with the classical Gaussian and Laguerre unitary ensembles. In the almost-Hermitian setting, which was pioneered by Fyodorov, Khoruzhenko and Sommers in the case of GUE, the eigenvalues are not confined to the real axis, but instead have imaginary parts which vary within a narrow band about the real line, of height proportional to $tfrac 1 N$, where $N$ denotes the size of the matrices. We study vertical cross-sections of the 1-point density as well as microscopic scaling limits, and we compare with other results which have appeared in the literature in recent years. Our approach uses Wards equation and a property which we call cross-section convergence, which relates the large-$N$ limit of the cross-sections of the density of eigenvalues with the equilibrium density for the corresponding Hermitian ensemble: the semi-circle law for GUE and the Marchenko-Pastur law for LUE.
221 - Thomas Richthammer 2004
We consider two-dimensional marked point processes which are Gibbsian with a two-body-potential U. U is supposed to have an internal continuous symmetry. We show that under suitable continuity conditions the considered processes are invariant under the given symmetry. We will achieve this by using Ruelle`s superstability estimates and percolation arguments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا