Do you want to publish a course? Click here

The Frontiers of Fairness in Machine Learning

86   0   0.0 ( 0 )
 Added by Aaron Roth
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The last few years have seen an explosion of academic and popular interest in algorithmic fairness. Despite this interest and the volume and velocity of work that has been produced recently, the fundamental science of fairness in machine learning is still in a nascent state. In March 2018, we convened a group of experts as part of a CCC visioning workshop to assess the state of the field, and distill the most promising research directions going forward. This report summarizes the findings of that workshop. Along the way, it surveys recent theoretical work in the field and points towards promising directions for research.



rate research

Read More

In machine learning (ML) applications, unfair predictions may discriminate against a minority group. Most existing approaches for fair machine learning (FML) treat fairness as a constraint or a penalization term in the optimization of a ML model, which does not lead to the discovery of the complete landscape of the trade-offs among learning accuracy and fairness metrics, and does not integrate fairness in a meaningful way. Recently, we have introduced a new paradigm for FML based on Stochastic Multi-Objective Optimization (SMOO), where accuracy and fairness metrics stand as conflicting objectives to be optimized simultaneously. The entire trade-offs range is defined as the Pareto front of the SMOO problem, which can then be efficiently computed using stochastic-gradient type algorithms. SMOO also allows defining and computing new meaningful predictors for FML, a novel one being the Sharpe predictor that we introduce and explore in this paper, and which gives the highest ratio of accuracy-to-unfairness. Inspired from SMOO in finance, the Sharpe predictor for FML provides the highest prediction return (accuracy) per unit of prediction risk (unfairness).
If our models are used in new or unexpected cases, do we know if they will make fair predictions? Previously, researchers developed ways to debias a model for a single problem domain. However, this is often not how models are trained and used in practice. For example, labels and demographics (sensitive attributes) are often hard to observe, resulting in auxiliary or synthetic data to be used for training, and proxies of the sensitive attribute to be used for evaluation of fairness. A model trained for one setting may be picked up and used in many others, particularly as is common with pre-training and cloud APIs. Despite the pervasiveness of these complexities, remarkably little work in the fairness literature has theoretically examined these issues. We frame all of these settings as domain adaptation problems: how can we use what we have learned in a source domain to debias in a new target domain, without directly debiasing on the target domain as if it is a completely new problem? We offer new theoretical guarantees of improving fairness across domains, and offer a modeling approach to transfer to data-sparse target domains. We give empirical results validating the theory and showing that these modeling approaches can improve fairness metrics with less data.
In recent years, federated learning has been embraced as an approach for bringing about collaboration across large populations of learning agents. However, little is known about how collaboration protocols should take agents incentives into account when allocating individual resources for communal learning in order to maintain such collaborations. Inspired by game theoretic notions, this paper introduces a framework for incentive-aware learning and data sharing in federated learning. Our stable and envy-free equilibria capture notions of collaboration in the presence of agents interested in meeting their learning objectives while keeping their own sample collection burden low. For example, in an envy-free equilibrium, no agent would wish to swap their sampling burden with any other agent and in a stable equilibrium, no agent would wish to unilaterally reduce their sampling burden. In addition to formalizing this framework, our contributions include characterizing the structural properties of such equilibria, proving when they exist, and showing how they can be computed. Furthermore, we compare the sample complexity of incentive-aware collaboration with that of optimal collaboration when one ignores agents incentives.
Motivated by settings in which predictive models may be required to be non-discriminatory with respect to certain attributes (such as race), but even collecting the sensitive attribute may be forbidden or restricted, we initiate the study of fair learning under the constraint of differential privacy. We design two learning algorithms that simultaneously promise differential privacy and equalized odds, a fairness condition that corresponds to equalizing false positive and negative rates across protected groups. Our first algorithm is a private implementation of the equalized odds post-processing approach of [Hardt et al., 2016]. This algorithm is appealingly simple, but must be able to use protected group membership explicitly at test time, which can be viewed as a form of disparate treatment. Our second algorithm is a differentially private version of the oracle-efficient in-processing approach of [Agarwal et al., 2018] that can be used to find the optimal fair classifier, given access to a subroutine that can solve the original (not necessarily fair) learning problem. This algorithm is more complex but need not have access to protected group membership at test time. We identify new tradeoffs between fairness, accuracy, and privacy that emerge only when requiring all three properties, and show that these tradeoffs can be milder if group membership may be used at test time. We conclude with a brief experimental evaluation.
110 - Rad Niazadeh 2021
Motivated by online decision-making in time-varying combinatorial environments, we study the problem of transforming offline algorithms to their online counterparts. We focus on offline combinatorial problems that are amenable to a constant factor approximation using a greedy algorithm that is robust to local errors. For such problems, we provide a general framework that efficiently transforms offline robust greedy algorithms to online ones using Blackwell approachability. We show that the resulting online algorithms have $O(sqrt{T})$ (approximate) regret under the full information setting. We further introduce a bandit extension of Blackwell approachability that we call Bandit Blackwell approachability. We leverage this notion to transform greedy robust offline algorithms into a $O(T^{2/3})$ (approximate) regret in the bandit setting. Demonstrating the flexibility of our framework, we apply our offline-to-online transformation to several problems at the intersection of revenue management, market design, and online optimization, including product ranking optimization in online platforms, reserve price optimization in auctions, and submodular maximization. We show that our transformation, when applied to these applications, leads to new regret bounds or improves the current known bounds.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا