Do you want to publish a course? Click here

Controlling spin supercurrents via nonequilibrium spin injection

73   0   0.0 ( 0 )
 Added by Jabir Ali Ouassou
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a mechanism whereby spin supercurrents can be manipulated in superconductor/ferromagnet proximity systems via nonequilibrium spin injection. We find that if a spin supercurrent exists in equilibrium, a nonequilibrium spin accumulation will exert a torque on the spins transported by this current. This interaction causes a new spin supercurrent contribution to manifest out of equilibrium, which is proportional to and polarized perpendicularly to both the injected spins and equilibrium spin current. This is interesting for several reasons: as a fundamental physical effect; due to possible applications as a way to control spin supercurrents; and timeliness in light of recent experiments on spin injection in proximitized superconductors.



rate research

Read More

Here, we present a study on Si(111)/-Ta($150$AA )/-IrMn($150$AA )/-NiFe($50$AA )/-Nb($x$)/-NiFe($50$AA )/-Ta($50$AA ) and Si(111)/-Ta($150$AA )/-NiFe($50$AA )/-Nb($x$)/-NiFe($50$AA )/-IrMn($150$AA )/-Ta($50$AA ) spin-valves with $x=100$ to $500$AA . For both sample families, above a specific critical thickness of the Nb-layer and below $T_c$, the superconducting Nb-layer contributes strongly to the magnetization. These systems show an anomalous hysteresis loop in the magnetization of the superconducting layer; the hysteresis loop is similar to what is generally expected from hard superconductors and many superconductor/ferromagnet hybrid systems, but the direction of the hysteresis loop is inverted, compared to what is generally observed (paramagnetic for up sweeping fields and diamagnetic for down sweeping fields). This means that the respective samples exhibit a magnetization, which is contrary to what should be expected from the Lenz rule.
We report that spin supercurrents in magnetic superconductors and superconductor/ferromagnetic insulator bilayers can induce the Dzyaloshinskii-Moriya interaction which strength is proportional to the superconducting order parameter amplitude. This effect leads to the existence of inhomogeneous parity-breaking ground states combining the chiral magnetic helix and the pair density wave orders. The formation of such states takes place via the penetration of chiral domain walls at the threshold temperature below the superconducting transition. We find regimes with both the single and the re-entrant transitions into the inhomogeneous states with decreasing temperature. The predicted hybrid chiral states can be found in the existing structures with realistic parameters and materials combinations.
118 - M. Eschrig 2015
During the past 15 years a new field has emerged, which combines superconductivity and spintronics, with the goal to pave a way for new types of devices for applications combining the virtues of both by offering the possibility of long-range spin-polarized supercurrents. Such supercurrents constitute a fruitful basis for the study of fundamental physics as they combine macroscopic quantum coherence with microscopic exchange interactions, spin selectivity, and spin transport. This report follows recent developments in the controlled creation of long-range equal-spin triplet supercurrents in ferromagnets and its contribution to spintronics. The mutual proximity-induced modification of order in superconductor-ferromagnet hybrid structures introduces in a natural way such evasive phenomena as triplet superconductivity, odd-frequency pairing, Fulde-Ferrell-Larkin-Ovchinnikov pairing, long-range equal-spin supercurrents, $pi$-Josephson junctions, as well as long-range magnetic proximity effects. All these effects were rather exotic before 2000, when improvements in nanofabrication and materials control allowed for a new quality of hybrid structures. Guided by pioneering theoretical studies, experimental progress evolved rapidly, and since 2010 triplet supercurrents are routinely produced and observed. We have entered a new stage of studying new phases of matter previously out of our reach, and of merging the hitherto disparate fields of superconductivity and spintronics to a new research direction: super-spintronics.
Opposite to the common idea of a magnetic order requirement to obtain spin current propagation, materials with no magnetic ordering have also been revealed to be efficient spin conductors. In this work, we investigate the spin current injection at the interface between a magnetic insulator and a superconductor. We are mainly interested in the paramagnetic insulator/superconductor interface however, our model also describes the ferromagnetic phase. We used the Schwinger bosonic formalism to describe the magnetic insulator and standard BCS theory was applied to treat the superconductor layer. In the normal-metal limit, our results are in agreement with the expected ones. For example, we found the correct spin current behavior $Iapprox T^{3/2}$ at low temperature. In addition, our model shows a pronounced peak in the spin current injection at temperatures close to the superconductor transition temperature due to the superconducting quasiparticle coherence. The role of magnetic fields in the spin current injection is also investigated.
We study low-temperature transport through a Coulomb blockaded quantum dot (QD) contacted by a normal (N), and a superconducting (S) electrode. Within an effective cotunneling model the conduction electron self energy is calculated to leading order in the cotunneling amplitudes and subsequently resummed to obtain the nonequilibrium T-matrix, from which we obtain the nonlinear cotunneling conductance. For even occupied dots the system can be conceived as an effective S/N-cotunnel junction with subgap transport mediated by Andreev reflections. The net spin of an odd occupied dot, however, leads to the formation of sub-gap resonances inside the superconducting gap which gives rise to a characteristic peak-dip structure in the differential conductance, as observed in recent experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا