Do you want to publish a course? Click here

Optimal cell transport in straight channels and networks

302   0   0.0 ( 0 )
 Added by Gwennou Coupier
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Flux of rigid or soft particles (such as drops, vesicles, red blood cells, etc.) in a channel is a complex function of particle concentration, which depends on the details of induced dissipation and suspension structure due to hydrodynamic interactions with walls or between neighboring particles. Through two-dimensional and three-dimensional simulations and a simple model that reveals the contribution of the main characteristics of the flowing suspension, we discuss the existence of an optimal volume fraction for cell transport and its dependence on the cell mechanical properties. The example of blood is explored in detail, by adopting the commonly used modeling of red blood cells dynamics. We highlight the complexity of optimization at the level of a network, due to the antagonist evolution of local volume fraction and optimal volume fraction with the channels diameter. In the case of the blood network, the most recent results on the size evolution of vessels along the circulatory network of healthy organs suggest that the red blood cell volume fraction (hematocrit) of healthy subjects is close to optimality, as far as transport only is concerned. However, the hematocrit value of patients suffering from diverse red blood cel pathologies may strongly deviate from optimality.



rate research

Read More

Understanding mixing and transport of passive scalars in active fluids is important to many natural (e.g. algal blooms) and industrial (e.g. biofuel, vaccine production) processes. Here, we study the mixing of a passive scalar (dye) in dilute suspensions of swimming Escherichia coli in experiments using a two-dimensional (2D) time-periodic flow and in a simple simulation. Results show that the presence of bacteria hinders large scale transport and reduce overall mixing rate. Stretching fields, calculated from experimentally measured velocity fields, show that bacterial activity attenuates fluid stretching and lowers flow chaoticity. Simulations suggest that this attenuation may be attributed to a transient accumulation of bacteria along regions of high stretching. Spatial power spectra and correlation functions of dye concentration fields show that the transport of scalar variance across scales is also hindered by bacterial activity, resulting in an increase in average size and lifetime of structures. On the other hand, at small scales, activity seems to enhance local mixing. One piece of evidence is that the probability distribution of the spatial concentration gradients is nearly symmetric with a vanishing skewness. Overall, our results show that the coupling between activity and flow can lead to nontrivial effects on mixing and transport.
Computational Fluid Dynamics (CFD) is currently used to design and improve the hydraulic properties of biomedical devices, wherein the large scale blood circulation needs to be simulated by accounting for the mechanical response of red blood cells (RBCs) at mesoscales. In many practical instances, biomedical devices work on time-scales comparable to the intrinsic relaxation time of RBCs: thus, a systematic understanding of the time-dependent response of erythrocyte membranes is crucial for the effective design of such devices. So far, this information has been deduced from experimental data, which do not necessarily adapt to the the broad variety of the fluid dynamic conditions that can be encountered in practice. This work explores the novel possibility of studying the time-dependent response of an erythrocyte membrane to external mechanical loads via ab-initio, mesoscale numerical simulations, with a primary focus on the detailed characterisation of the RBC relaxation time $t_c$ following the arrest of the external mechanical load. The adopted mesoscale model exploits a hybrid Immersed Boundary-Lattice Boltzmann Method (IB-LBM), coupled with the Standard Linear Solid model (SLS) to account for the RBC membrane viscosity. We underscore the key importance of the 2D membrane viscosity $mu_{m}$ to correctly reproduce the relaxation time of the RBC membrane. A detailed assessment of the dependencies on the typology and strength of the applied mechanical loads is also provided. Overall, our findings open interesting future perspectives for the study of the non-linear response of RBCs immersed in time-dependent strain fields.
Unlike pressure-driven flows, surface-mediated phoretic flows provide efficient means to drive fluid motion on very small scales. Colloidal particles covered with chemically-active patches with nonzero phoretic mobility (e.g. Janus particles) swim using self-generated gradients, and similar physics can be exploited to create phoretic pumps. Here we analyse in detail the design principles of phoretic pumps and show that for a minimal phoretic pump, consisting of 3 distinct chemical patches, the optimal arrangement of the patches maximizing the flow rate is universal and independent of chemistry.
Many microfluidic devices use macroscopic pressure differentials to overcome viscous friction and generate flows in microchannels. In this work, we investigate how the chemical and geometric properties of the channel walls can drive a net flow by exploiting the autophoretic slip flows induced along active walls by local concentration gradients of a solute species. We show that chemical patterning of the wall is not required to generate and control a net flux within the channel, rather channel geometry alone is sufficient. Using numerical simulations, we determine how geometric characteristics of the wall influence channel flow rate, and confirm our results analytically in the asymptotic limit of lubrication theory.
We consider self-propelled droplets which are driven by internal flow. Tracer particles, which are advected by the flow, in general follow chaotic trajectories, even though the motion of the autonomous swimmer is completely regular. The flow is mixing, and for P{e}clet and Batchelor numbers, which are realized e.g. in eucaryotic cells, advective mixing can substantially accelerate and even dominate transport by diffusion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا