No Arabic abstract
Payment channels are the most prominent solution to the blockchain scalability problem. We introduce the problem of network design with fees for payment channels from the perspective of a Payment Service Provider (PSP). Given a set of transactions, we examine the optimal graph structure and fee assignment to maximize the PSPs profit. A customer prefers to route transactions through the PSPs network if the cheapest path from sender to receiver is financially interesting, i.e., if the path costs less than the blockchain fee. When the graph structure is a tree, and the PSP facilitates all transactions, the problem can be formulated as a linear program. For a path graph, we present a polynomial time algorithm to assign optimal fees. We also show that the star network, where the center is an additional node acting as an intermediary, is a near-optimal solution to the network design problem.
Payment channels allow transactions between participants of the blockchain to be executed securely off-chain, and thus provide a promising solution for the scalability problem of popular blockchains. We study the online network design problem for payment channels, assuming a central coordinator. We focus on a single channel, where the coordinator desires to maximize the number of accepted transactions under given capital constraints. Despite the simplicity of the problem, we present a flurry of impossibility results, both for deterministic and randomized algorithms against adaptive as well as oblivious adversaries.
We consider network design problems with deadline or delay. All previous results for these models are based on randomized embedding of the graph into a tree (HST) and then solving the problem on this tree. We show that this is not necessary. In particular, we design a deterministic framework for these problems which is not based on embedding. This enables us to provide deterministic $text{poly-log}(n)$-competitive algorithms for Steiner tree, generalized Steiner tree, node weighted Steiner tree, (non-uniform) facility location and directed Steiner tree with deadlines or with delay (where $n$ is the number of nodes). Our deterministic algorithms also give improved guarantees over some previous randomized results. In addition, we show a lower bound of $text{poly-log}(n)$ for some of these problems, which implies that our framework is optimal up to the power of the poly-log. Our algorithms and techniques differ significantly from those in all previous considerations of these problems.
Solving linear programs is often a challenging task in distributed settings. While there are good algorithms for solving packing and covering linear programs in a distributed manner (Kuhn et al.~2006), this is essentially the only class of linear programs for which such an algorithm is known. In this work we provide a distributed algorithm for solving a different class of convex programs which we call distance-bounded network design convex programs. These can be thought of as relaxations of network design problems in which the connectivity requirement includes a distance constraint (most notably, graph spanners). Our algorithm runs in $O( (D/epsilon) log n)$ rounds in the $mathcal{LOCAL}$ model and finds a $(1+epsilon)$-approximation to the optimal LP solution for any $0 < epsilon leq 1$, where $D$ is the largest distance constraint. While solving linear programs in a distributed setting is interesting in its own right, this class of convex programs is particularly important because solving them is often a crucial step when designing approximation algorithms. Hence we almost immediately obtain new and improved distributed approximation algorithms for a variety of network design problems, including Basic $3$- and $4$-Spanner, Directed $k$-Spanner, Lowest Degree $k$-Spanner, and Shallow-Light Steiner Network Design with a spanning demand graph. Our algorithms do not require any heavy computation and essentially match the best-known centralized approximation algorithms, while previous approaches which do not use heavy computation give approximations which are worse than the best-known centralized bounds.
In the Group Steiner Tree problem (GST), we are given a (vertex or edge)-weighted graph $G=(V,E)$ on $n$ vertices, a root vertex $r$ and a collection of groups ${S_i}_{iin[h]}: S_isubseteq V(G)$. The goal is to find a min-cost subgraph $H$ that connects the root to every group. We consider a fault-tolerant variant of GST, which we call Restricted (Rooted) Group SNDP. In this setting, each group $S_i$ has a demand $k_iin[k],kinmathbb N$, and we wish to find a min-cost $Hsubseteq G$ such that, for each group $S_i$, there is a vertex in $S_i$ connected to the root via $k_i$ (vertex or edge) disjoint paths. While GST admits $O(log^2 nlog h)$ approximation, its high connectivity variants are Label-Cover hard, and for the vertex-weighted version, the hardness holds even when $k=2$. Previously, positive results were known only for the edge-weighted version when $k=2$ [Gupta et al., SODA 2010; Khandekar et al., Theor. Comput. Sci., 2012] and for a relaxed variant where the disjoint paths may end at different vertices in a group [Chalermsook et al., SODA 2015]. Our main result is an $O(log nlog h)$ approximation for Restricted Group SNDP that runs in time $n^{f(k, w)}$, where $w$ is the treewidth of $G$. This nearly matches the lower bound when $k$ and $w$ are constant. The key to achieving this result is a non-trivial extension of the framework in [Chalermsook et al., SODA 2017], which embeds all feasible solutions to the problem into a dynamic program (DP) table. However, finding the optimal solution in the DP table remains intractable. We formulate a linear program relaxation for the DP and obtain an approximate solution via randomized rounding. This framework also allows us to systematically construct DP tables for high-connectivity problems. As a result, we present new exact algorithms for several variants of survivable network design problems in low-treewidth graphs.
We consider node-weighted survivable network design (SNDP) in planar graphs and minor-closed families of graphs. The input consists of a node-weighted undirected graph $G=(V,E)$ and integer connectivity requirements $r(uv)$ for each unordered pair of nodes $uv$. The goal is to find a minimum weighted subgraph $H$ of $G$ such that $H$ contains $r(uv)$ disjoint paths between $u$ and $v$ for each node pair $uv$. Thr