Do you want to publish a course? Click here

Perspectives of a visible instrument on the VLTI

236   0   0.0 ( 0 )
 Added by Florentin Millour
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we present the most promising science cases for a new generation visible instrument on the VLTI and the conceptual idea for the instrumental configuration. We also present a statistical study of the potential targets that may be accessible for the different classes of objects and for the required spectral resolutions.



rate research

Read More

The VLTI instrument GRAVITY combines the beams from four telescopes and provides phase-referenced imaging as well as precision-astrometry of order 10 microarcseconds by observing two celestial objects in dual-field mode. Their angular separation can be determined from their differential OPD (dOPD) when the internal dOPDs in the interferometer are known. Here, we present the general overview of the novel metrology system which performs these measurements. The metrology consists of a three-beam laser system and a homodyne detection scheme for three-beam interference using phase-shifting interferometry in combination with lock-in amplifiers. Via this approach the metrology system measures dOPDs on a nanometer-level.
PIONIER stands for Precision Integrated-Optics Near-infrared Imaging ExpeRiment. It combines four 1.8m Auxilliary Telescopes or four 8m Unit Telescopes of the Very Large Telescope Interferometer (ESO, Chile) using an integrated optics combiner. The instrument has been integrated at IPAG starting in December 2009 and commissioned at the Paranal Observatory in October 2010. It provides scientific observations since November 2010. In this paper, we detail the instrumental concept, we describe the standard operational modes and the data reduction strategy. We present the typical performance and discuss how to improve them. This paper is based on laboratory data obtained during the integrations at IPAG, as well as on-sky data gathered during the commissioning at VLTI. We illustrate the imaging capability of PIONIER on the binaries deltaSco and HIP11231. PIONIER provides 6 visibilities and 3 independent closure phases in the H band, either in a broadband mode or with a low spectral dispersion (R=40), using natural light (i.e. unpolarized). The limiting magnitude is Hmag=7 in dispersed mode under median atmospheric conditions (seeing<1, tau0>3ms) with the 1.8m Auxiliary Telescopes. We demonstrate a precision of 0.5deg on the closure phases. The precision on the calibrated visibilities ranges from 3 to 15% depending on the atmospheric conditions. PIONIER has been installed and successfully tested as a visitor instrument for the VLTI. It permits high angular resolution imaging studies at an unprecedented level of sensitivity. The successful combination of the four 8m Unit Telescopes in March 2011 demonstrates that VLTI is ready for 4-telescope operation.
GRAVITY is an adaptive optics assisted Beam Combiner for the second generation VLTI instrumentation. The instrument will provide high-precision narrow-angle astrometry and phase-referenced interferometric imaging in the astronomical K-band for faint objects. We describe the wide range of science that will be tackled with this instrument, highlighting the unique capabilities of the VLTI in combination with GRAVITY. The most prominent goal is to observe highly relativistic motions of matter close to the event horizon of Sgr A*, the massive black hole at center of the Milky Way. We present the preliminary design that fulfils the requirements that follow from the key science drivers: It includes an integrated optics, 4-telescope, dual feed beam combiner operated in a cryogenic vessel; near-infrared wavefrontsensing adaptive optics; fringe-tracking on secondary sources within the field of view of the VLTI and a novel metrology concept. Simulations show that 10 {mu}as astrometry within few minutes is feasible for a source with a magnitude of mK = 15 like Sgr A*, given the availability of suitable phase reference sources (mK = 10). Using the same setup, imaging of mK = 18 stellar sources in the interferometric field of view is possible, assuming a full night of observations and the corresponding UV coverage of the VLTI.
Despite several decades of multi-wavelength and multi-messenger spectral observations, Gamma-Ray Bursts (GRBs) remain one of the big mysteries of modern astrophysics. Polarization measurements are essential to gain a more clear and complete picture of the emission processes at work in these extremely powerful transient events. In this regard, a first generation of dedicated gamma-ray polarimeters, POLAR and GAP, were launched into space in the last decade. After 6 months of operation, the POLAR mission detected 55 GRBs, among which 14 have been analyzed in detail, reporting a low polarization degree and a hint of a temporal evolution of the polarization angle. Starting early 2024 and based on the legacy of the POLAR results, the POLAR-2 instrument will aim to provide a catalog of high quality measurements of the energy and temporal evolution of the GRB polarization thanks to its large and efficient polarimeter. Several spectrometer modules will additionally allow to perform joint spectral and polarization analyzes. The mission is foreseen to make high precision polarization measurements of about 50 GRBs every year on board of the China Space Station (CSS). The technical design of the polarimeter modules will be discussed in detail, as well as the expected scientific performances based on the first results of the developed prototype modules.
211 - A. DAddabbo 2013
The New IRAM KIDs Array (NIKA) is a pathfinder instrument devoted to millimetric astronomy. In 2009 it was the first multiplexed KID camera on the sky; currently it is installed at the focal plane of the IRAM 30-meters telescope at Pico Veleta (Spain). We present preliminary data from the last observational run and the ongoing developments devoted to the next NIKA-2 kilopixels camera, to be commissioned in 2015. We also report on the latest laboratory measurements, and recent improvements in detector cosmetics and read-out electronics. Furthermore, we describe a new acquisition strategy allowing us to improve the photometric accuracy, and the related automatic tuning procedure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا