No Arabic abstract
Network cache allocation and management are important aspects of the design of an Information-Centric Network (ICN), such as one based on Named Data Networking (NDN). We address the problem of optimal cache size allocation and content placement in an ICN in order to maximize the caching gain resulting from routing cost savings. While prior art assumes a given cache size at each network node and focuses on content placement, we study the problem when a global, network-wide cache storage budget is given and we solve for the optimal per-node cache allocation. This problem arises in cloud-based network settings where each network node is virtualized and housed within a cloud data center node with associated dynamic storage resources acquired from the cloud node as needed. With the offline centralized version of the optimal cache allocation problem being NP-hard, we develop a distributed adaptive algorithm that provides an approximate solution within a constant factor from the optimal. Performance evaluation of the algorithm is carried out through extensive simulations involving a variety of network topologies, establishing experimentally that our proposal significantly outperforms existing cache allocation algorithms.
In this paper, we investigate a cache updating system with a server containing $N$ files, $K$ relays and $M$ users. The server keeps the freshes
We propose a new optimal consumption model in which the degree of addictiveness of habit formation is directly controlled through a consumption constraint. In particular, we assume that the individual is unwilling to consume at a rate below a certain proportion $0<alphale1$ of her consumption habit, which is the exponentially-weighted average of past consumption rates. $alpha=1$ prohibits the habit process to decrease and corresponds to the completely addictive model. $alpha=0$ makes the habit-formation constraint moot and corresponds to the non-addictive model. $0<alpha<1$ leads to partially addictive models, with the level of addictiveness increasing with $alpha$. In contrast to the existing habit-formation literature, our constraint cannot be incorporated in the objective function through infinite marginal utility. Assuming that the individual invests in a risk-free market, we formulate and solve an infinite-horizon, deterministic control problem to maximize the discounted CRRA utility of the consumption-to-habit process subject to the habit-formation constraint. Optimal consumption policies are derived explicitly in terms of the solution of a nonlinear free-boundary problem, which we analyze in detail. Impatient always consume above the minimum rate; thus, they eventually attain the minimum wealth-to-habit ratio. Patient individuals consume at the minimum rate if their wealth-to-habit ratio is below a threshold, and above it otherwise. By consuming patiently, these individuals maintain a wealth-to-habit ratio that is greater than the minimum acceptable level. Additionally, we prove that the optimal consumption path is hump-shaped if the initial wealth-to-habit ratio is either: (1) larger than a high threshold; or (2) below a low threshold and the agent is less risk averse. Thus, we provide a simple explanation for the consumption hump observed by various empirical studies.
This article investigates the cache-enabling unmanned aerial vehicle (UAV) cellular networks with massive access capability supported by non-orthogonal multiple access (NOMA). The delivery of a large volume of multimedia contents for ground users is assisted by a mobile UAV base station, which caches some popular contents for wireless backhaul link traffic offloading. In cache-enabling UAV NOMA networks, the caching placement of content caching phase and radio resource allocation of content delivery phase are crucial for network performance. To cope with the dynamic UAV locations and content requests in practical scenarios, we formulate the long-term caching placement and resource allocation optimization problem for content delivery delay minimization as a Markov decision process (MDP). The UAV acts as an agent to take actions for caching placement and resource allocation, which includes the user scheduling of content requests and the power allocation of NOMA users. In order to tackle the MDP, we propose a Q-learning based caching placement and resource allocation algorithm, where the UAV learns and selects action with emph{soft ${varepsilon}$-greedy} strategy to search for the optimal match between actions and states. Since the action-state table size of Q-learning grows with the number of states in the dynamic networks, we propose a function approximation based algorithm with combination of stochastic gradient descent and deep neural networks, which is suitable for large-scale networks. Finally, the numerical results show that the proposed algorithms provide considerable performance compared to benchmark algorithms, and obtain a trade-off between network performance and calculation complexity.
We consider a cache updating system with a source, a cache with limited storage capacity and a user. There are $n$ files. The source keeps the freshes
How to strategically allocate the available vaccines is a crucial issue for pandemic control. In this work, we propose a mathematical framework for optimal stabilizing vaccine allocation, where our goal is to send the infections to zero as soon as possible with a fixed number of vaccine doses. This framework allows us to efficiently compute the optimal vaccine allocation policy for general epidemic spread models including SIS/SIR/SEIR and a new model of COVID-19 transmissions. By fitting the real data in New York State to our framework, we found that the optimal stabilizing vaccine allocation policy suggests offering vaccines priority to locations where there are more susceptible people and where the residents spend longer time outside the home. Besides, we found that offering vaccines priority to young adults (20-29) and middle-age adults (20-44) can minimize the cumulative infected cases and the death cases. Moreover, we compared our method with five age-stratified strategies in cite{bubar2021model} based on their epidemics model. We also found its better to offer vaccine priorities to young people to curb the disease and minimize the deaths when the basic reproduction number $R_0$ is moderately above one, which describes the most world during COVID-19. Such phenomenon has been ignored in cite{bubar2021model}.