Do you want to publish a course? Click here

A simple proof of Pitman-Yors Chinese restaurant process from its stick-breaking representation

133   0   0.0 ( 0 )
 Added by Julyan Arbel
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

For a long time, the Dirichlet process has been the gold standard discrete random measure in Bayesian nonparametrics. The Pitman--Yor process provides a simple and mathematically tractable generalization, allowing for a very flexible control of the clustering behaviour. Two commonly used representations of the Pitman--Yor process are the stick-breaking process and the Chinese restaurant process. The former is a constructive representation of the process which turns out very handy for practical implementation, while the latter describes the partition distribution induced. However, the usual proof of the connection between them is indirect and involves measure theory. We provide here an elementary proof of Pitman--Yors Chinese Restaurant process from its stick-breaking representation.



rate research

Read More

In this paper we consider approximations to the popular Pitman-Yor process obtained by truncating the stick-breaking representation. The truncation is determined by a random stopping rule that achieves an almost sure control on the approximation error in total variation distance. We derive the asymptotic distribution of the random truncation point as the approximation error epsilon goes to zero in terms of a polynomially tilted positive stable distribution. The practical usefulness and effectiveness of this theoretical result is demonstrated by devising a sampling algorithm to approximate functionals of the epsilon-version of the Pitman-Yor process.
In [10], a `Markovian stick-breaking process which generalizes the Dirichlet process $(mu, theta)$ with respect to a discrete base space ${mathfrak X}$ was introduced. In particular, a sample from from the `Markovian stick-breaking processs may be represented in stick-breaking form $sum_{igeq 1} P_i delta_{T_i}$ where ${T_i}$ is a stationary, irreducible Markov chain on ${mathfrak X}$ with stationary distribution $mu$, instead of i.i.d. ${T_i}$ each distributed as $mu$ as in the Dirichlet case, and ${P_i}$ is a GEM$(theta)$ residual allocation sequence. Although the motivation in [10] was to relate these Markovian stick-breaking processes to empirical distributional limits of types of simulated annealing chains, these processes may also be thought of as a class of priors in statistical problems. The aim of this work in this context is to identify the posterior distribution and to explore the role of the Markovian structure of ${T_i}$ in some inference test cases.
In a general stochastic multistate promoter model of dynamic mRNA/protein interactions, we identify the stationary joint distribution of the promoter state, mRNA, and protein levels through an explicit `stick-breaking construction of interest in itself. This derivation is a constructive advance over previous work where the stationary distribution is solved only in restricted cases. Moreover, the stick-breaking construction allows to sample directly from the stationary distribution, permitting inference procedures and model selection. In this context, we discuss numerical Bayesian experiments to illustrate the results.
We introduce the ARMA (autoregressive-moving-average) point process, which is a Hawkes process driven by a Neyman-Scott process with Poisson immigration. It contains both the Hawkes and Neyman-Scott process as special cases and naturally combines self-exciting and shot-noise cluster mechanisms, useful in a variety of applications. The name ARMA is used because the ARMA point process is an appropriate analogue of the ARMA time series model for integer-valued series. As such, the ARMA point process framework accommodates a flexible family of models sharing methodological and mathematical similarities with ARMA time series. We derive an estimation procedure for ARMA point processes, as well as the integer ARMA models, based on an MCEM (Monte Carlo Expectation Maximization) algorithm. This powerful framework for estimation accommodates trends in immigration, multiple parametric specifications of excitement functions, as well as cases where marks and immigrants are not observed.
In some non-regular statistical estimation problems, the limiting likelihood processes are functionals of fractional Brownian motion (fBm) with Hursts parameter H; 0 < H <=? 1. In this paper we present several analytical and numerical results on the moments of Pitman estimators represented in the form of integral functionals of fBm. We also provide Monte Carlo simulation results for variances of Pitman and asymptotic maximum likelihood estimators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا