No Arabic abstract
Current methods for estimating force from tactile sensor signals are either inaccurate analytic models or task-specific learned models. In this paper, we explore learning a robust model that maps tactile sensor signals to force. We specifically explore learning a mapping for the SynTouch BioTac sensor via neural networks. We propose a voxelized input feature layer for spatial signals and leverage information about the sensor surface to regularize the loss function. To learn a robust tactile force model that transfers across tasks, we generate ground truth data from three different sources: (1) the BioTac rigidly mounted to a force torque~(FT) sensor, (2) a robot interacting with a ball rigidly attached to the same FT sensor, and (3) through force inference on a planar pushing task by formalizing the mechanics as a system of particles and optimizing over the object motion. A total of 140k samples were collected from the three sources. We achieve a median angular accuracy of 3.5 degrees in predicting force direction (66% improvement over the current state of the art) and a median magnitude accuracy of 0.06 N (93% improvement) on a test dataset. Additionally, we evaluate the learned force model in a force feedback grasp controller performing object lifting and gentle placement. Our results can be found on https://sites.google.com/view/tactile-force.
Estimation of tactile properties from vision, such as slipperiness or roughness, is important to effectively interact with the environment. These tactile properties help us decide which actions we should choose and how to perform them. E.g., we can drive slower if we see that we have bad traction or grasp tighter if an item looks slippery. We believe that this ability also helps robots to enhance their understanding of the environment, and thus enables them to tailor their actions to the situation at hand. We therefore propose a model to estimate the degree of tactile properties from visual perception alone (e.g., the level of slipperiness or roughness). Our method extends a encoder-decoder network, in which the latent variables are visual and tactile features. In contrast to previous works, our method does not require manual labeling, but only RGB images and the corresponding tactile sensor data. All our data is collected with a webcam and uSkin tactile sensor mounted on the end-effector of a Sawyer robot, which strokes the surfaces of 25 different materials. We show that our model generalizes to materials not included in the training data by evaluating the feature space, indicating that it has learned to associate important tactile properties with images.
Knowledge of interaction forces during teleoperated robot-assisted surgery could be used to enable force feedback to human operators and evaluate tissue handling skill. However, direct force sensing at the end-effector is challenging because it requires biocompatible, sterilizable, and cost-effective sensors. Vision-based deep learning using convolutional neural networks is a promising approach for providing useful force estimates, though questions remain about generalization to new scenarios and real-time inference. We present a force estimation neural network that uses RGB images and robot state as inputs. Using a self-collected dataset, we compared the network to variants that included only a single input type, and evaluated how they generalized to new viewpoints, workspace positions, materials, and tools. We found that vision-based networks were sensitive to shifts in viewpoints, while state-only networks were robust to changes in workspace. The network with both state and vision inputs had the highest accuracy for an unseen tool, and was moderately robust to changes in viewpoints. Through feature removal studies, we found that using only position features produced better accuracy than using only force features as input. The network with both state and vision inputs outperformed a physics-based baseline model in accuracy. It showed comparable accuracy but faster computation times than a baseline recurrent neural network, making it better suited for real-time applications.
Were interested in the problem of estimating object states from touch during manipulation under occlusions. In this work, we address the problem of estimating object poses from touch during planar pushing. Vision-based tactile sensors provide rich, local image measurements at the point of contact. A single such measurement, however, contains limited information and multiple measurements are needed to infer latent object state. We solve this inference problem using a factor graph. In order to incorporate tactile measurements in the graph, we need local observation models that can map high-dimensional tactile images onto a low-dimensional state space. Prior work has used low-dimensional force measurements or engineered functions to interpret tactile measurements. These methods, however, can be brittle and difficult to scale across objects and sensors. Our key insight is to directly learn tactile observation models that predict the relative pose of the sensor given a pair of tactile images. These relative poses can then be incorporated as factors within a factor graph. We propose a two-stage approach: first we learn local tactile observation models supervised with ground truth data, and then integrate these models along with physics and geometric factors within a factor graph optimizer. We demonstrate reliable object tracking using only tactile feedback for 150 real-world planar pushing sequences with varying trajectories across three object shapes. Supplementary video: https://youtu.be/y1kBfSmi8w0
Legged robots, specifically quadrupeds, are becoming increasingly attractive for industrial applications such as inspection. However, to leave the laboratory and to become useful to an end user requires reliability in harsh conditions. From the perspective of state estimation, it is essential to be able to accurately estimate the robots state despite challenges such as uneven or slippery terrain, textureless and reflective scenes, as well as dynamic camera occlusions. We are motivated to reduce the dependency on foot contact classifications, which fail when slipping, and to reduce position drift during dynamic motions such as trotting. To this end, we present a factor graph optimization method for state estimation which tightly fuses and smooths inertial navigation, leg odometry and visual odometry. The effectiveness of the approach is demonstrated using the ANYmal quadruped robot navigating in a realistic outdoor industrial environment. This experiment included trotting, walking, crossing obstacles and ascending a staircase. The proposed approach decreased the relative position error by up to 55% and absolute position error by 76% compared to kinematic-inertial odometry.
In this paper, we present an approach for robot learning of social affordance from human activity videos. We consider the problem in the context of human-robot interaction: Our approach learns structural representations of human-human (and human-object-human) interactions, describing how body-parts of each agent move with respect to each other and what spatial relations they should maintain to complete each sub-event (i.e., sub-goal). This enables the robot to infer its own movement in reaction to the human body motion, allowing it to naturally replicate such interactions. We introduce the representation of social affordance and propose a generative model for its weakly supervised learning from human demonstration videos. Our approach discovers critical steps (i.e., latent sub-events) in an interaction and the typical motion associated with them, learning what body-parts should be involved and how. The experimental results demonstrate that our Markov Chain Monte Carlo (MCMC) based learning algorithm automatically discovers semantically meaningful interactive affordance from RGB-D videos, which allows us to generate appropriate full body motion for an agent.