Do you want to publish a course? Click here

Existence and stability of dust ion acoustic double layers described by the combined MKP-KP equation

156   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The purpose of this paper is to expand the recent work of Sardar et al. [Phys. Plasmas 23, 123706 (2016)] on the existence and stability of alternative dust ion acoustic solitary wave solution of the combined modified Kadomtsev Petviashvili - Kadomtsev Petviashvili (MKP-KP) equation in a nonthermal plasma. Sardar et al. [Phys. Plasmas 23, 123706 (2016)] have derived a combined MKP-KP equation to describe the nonlinear behaviour of the dust ion acoustic wave when the coefficient of the nonlinear term of the KP equation tends to zero. Sardar et al. [Phys. Plasmas 23, 123706 (2016)] have used this combined MKP-KP equation to investigate the existence and stability of the alternative solitary wave solution having a profile different from sech^2 or sech when L > 0, where L is a function of the parameters of the present plasma system. In the present paper, we have considered the same combined MKP-KP equation to study the existence and stability of the double layer solution and it is shown that double layer solution of this combined MKP-KP equation exists if L = 0. Finally, the lowest order stability of the double layer solution of this combined MKP-KP equation has been investigated with the help of multiple scale perturbation expansion method of Allen and Rowlands [ J. Plasma Phys. 50, 413 (1993)]. It is found that the double layer solution of the combined MKP-KP equation is stable at the lowest order of the wave number for long-wavelength plane-wave perturbation.



rate research

Read More

Sardar et al. [Phys. Plasmas 23, 073703 (2016)] have studied the stability of small amplitude dust ion acoustic solitary waves in a collisionless unmagnetized electron - positron - ion - dust plasma. They have derived a Kadomtsev Petviashvili (KP) equation to investigate the lowest - order stability of the solitary wave solution of the Korteweg-de Vries (KdV) equation for long-wavelength plane-wave transverse perturbation when the weak dependence of the spatial coordinates perpendicular to the direction of propagation of the wave is taken into account. In the present paper, we have extended the lowest - order stability analysis of KdV solitons given in the paper of Sardar et al. [Phys. Plasmas 23, 073703 (2016)] to higher order with the help of multiple-scale perturbation expansion method of Allen and Rowlands [J. Plasma Phys. 50, 413 (1993); 53, 63 (1995)]. It is found that solitary wave solution of the KdV equation is stable at the order k^2, where k is the wave number for long-wavelength plane-wave perturbation.
The Sagdeev pseudo-potential technique and the analytic theory developed by Das et al. [J. Plasma Phys. 78, 565 (2012)] have been used to investigate the dust ion acoustic solitary structures at the acoustic speed in a collisionless unmagnetized dusty plasma consisting of negatively charged static dust grains, adiabatic warm ions, nonthermal electrons and isothermal positrons. The present system supports both positive and negative potential solitary waves at the acoustic speed, but the system does not support the coexistence of solitary structures of opposite polarity at the acoustic speed. The system also supports negative potential double layer at the acoustic speed, but does not support positive potential double layer. Although the system supports positive potential supersoliton at the supersonic speed, but there does not exist supersoliton of any polarity at the acoustic speed. Solitary structures have been investigated with the help of compositional parameter spaces and the phase portraits of the dynamical system describing the nonlinear behaviour of the dust ion acoustic waves at the acoustic speed. For the case, when there is no positron in the system, there exist negative potential double layer and negative potential supersoliton at the acoustic speed and for such case, the mechanism of transition of supersoliton to soliton after the formation of double layer at the acoustic speed has been discussed with the help of phase portraits. The differences between the solitary structures at the acoustic speed and the solitary structures at the supersonic speed have been analysed with the help of phase portraits.
578 - T.C. Li , J.F. Drake , M. Swisdak 2014
In observations of flare-heated electrons in the solar corona, a longstanding problem is the unexplained prolonged lifetime of the electrons compared to their transit time across the source. This suggests confinement. Recent particle-in-cell (PIC) simulations, which explored the transport of pre-accelerated hot electrons through ambient cold plasma, showed that the formation of a highly localized electrostatic potential drop, in the form of a double layer (DL), significantly inhibited the transport of hot electrons (T.C. Li, J.F. Drake, and M. Swisdak, 2012, ApJ, 757, 20). The effectiveness of confinement by a DL is linked to the strength of the DL as defined by its potential drop. In this work, we investigate the scaling of the DL strength with the hot electron temperature by PIC simulations, and find a linear scaling. We demonstrate that the strength is limited by the formation of parallel shocks. Based on this, we analytically determine the maximum DL strength, and find also a linear scaling with the hot electron temperature. The DL strength obtained from the analytic calculation is comparable to that from the simulations. At the maximum strength, the DL is capable of confining a significant fraction of hot electrons in the source.
The purpose of this paper is to extend the recent work of Paul & Bandyopadhyay [Astrophys. Space Sci. 361, 172(2016)] on the existence of different dust ion acoustic solitary structures in an unmagnetized collisionless dusty plasma consisting of negatively charged static dust grains, adiabatic warm ions, nonthermal electrons and isothermal positrons in a more generalized form by considering nonthermal positrons instead of isothermal positrons. The present system supports both positive and negative potential double layers, coexistence of solitary waves of both polarities and positive potential supersolitons. The qualitative and the quantitative changes in existence domains of different solitary structures which occur for the presence of nonthermal positrons have been presented in comparison with the results of Paul & Bandyopadhyay [Astrophys. Space Sci. 361, 172(2016)]. The formation of supersoliton structures and their limitations have been analyzed with the help of phase portraits of the dynamical system corresponding to the dust ion acoustic solitary structures. Phase portrait analysis clearly indicates a smooth transition between soliton and supersoliton.
The modulational instability (MI) criteria of dust-ion-acoustic (DIA) waves (DIAWs) have been investigated in a four-component pair-ion plasma having inertial pair-ions, inertialess non-thermal non-extensive electrons, and immobile negatively charged massive dust grains. A nonlinear Schr{o}dinger equation (NLSE) is derived by using reductive perturbation method. The nonlinear and dispersive coefficients of the NLSE can predict the modulationally stable and unstable parametric regimes of DIAWs and associated first and second order DIA rogue waves (DIARWs). The MI growth rate and the configuration of the DIARWs are examined, and it is found that the MI growth rate increases (decreases) with increasing the number density of the negatively charged dust grains in the presence (absence) of the negative ions. It is also observed that the amplitude and width of the DIARWs increase (decrease) with the negative (positive) ion mass. The implications of the results to laboratory and space plasmas are briefly discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا