Do you want to publish a course? Click here

Multigrid Optimization for Large-Scale Ptychographic Phase Retrieval

276   0   0.0 ( 0 )
 Added by Samy Wu Fung
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Ptychography is a popular imaging technique that combines diffractive imaging with scanning microscopy. The technique consists of a coherent beam that is scanned across an object in a series of overlapping positions, leading to reliable and improved reconstructions. Ptychographic microscopes allow for large fields to be imaged at high resolution at the cost of additional computational expense. In this work, we propose a multigrid-based optimization framework to reduce the computational burdens of large-scale ptychographic phase retrieval. Our proposed method exploits the inherent hierarchical structures in ptychography through tailored restriction and prolongation operators for the object and data domains. Our numerical results show that our proposed scheme accelerates the convergence of its underlying solver and outperforms the Ptychographic Iterative Engine (PIE), a workhorse in the optics community.



rate research

Read More

In this paper, we present an efficient adaptive multigrid strategy for large-scale molecular mechanics optimization. The oneway multigrid method is used with inexact approximations, such as the quasi-atomistic (QA) approximation or the blended ghost force correction (BGFC) approximation on each coarse level, combined with adaptive mesh refinements based on the gradient-based a posteriori error estimator. For crystalline defects, like vacancies, micro-crack and dislocation, sublinear complexity is observed numerically when the adaptive BGFC method is employed. For systems with more than ten millions atoms, this strategy has a fivefold acceleration in terms of CPU time.
Topology optimization for large scale problems continues to be a computational challenge. Several works exist in the literature to address this topic, and all make use of iterative solvers to handle the linear system arising from the Finite Element Analysis (FEA). However, the preconditioners used in these works vary, and in many cases are notably suboptimal. A handful of works have already demonstrated the effectiveness of Geometric Multigrid (GMG) preconditioners in topology optimization. Here, we show that Algebraic Multigrid (AMG) preconditioners offer superior robustness with only a small overhead cost. The difference is most pronounced when the optimization develops fine-scale structural features or multiple solutions to the same linear system are needed. We thus argue that the expanded use of AMG preconditioners in topology optimization will be essential for the optimization of more complex criteria in large-scale 3D domains.
Recently, efforts have been made to improve ptychography phase retrieval algorithms so that they are more robust against noise. Often the algorithm is adapted by changing the cost functional that needs to be minimized. In particular, it has been suggested that the cost functional should be obtained using a maximum-likelihood approach that takes the noise statistics into account. Here, we consider the different choices of cost functional, and to how they affect the reconstruction results. We find that seemingly the only consistently reliable way to improve reconstruction results in the presence of noise is to reduce the step size of the update function. In addition, a noise-robust ptychographic reconstruction method has been proposed that relies on adapting the intensity constraints
The phase retrieval problem, where one aims to recover a complex-valued image from far-field intensity measurements, is a classic problem encountered in a range of imaging applications. Modern phase retrieval approaches usually rely on gradient descent methods in a nonlinear minimization framework. Calculating closed-form gradients for use in these methods is tedious work, and formulating second order derivatives is even more laborious. Additionally, second order techniques often require the storage and inversion of large matrices of partial derivatives, with memory requirements that can be prohibitive for data-rich imaging modalities. We use a reverse-mode automatic differentiation (AD) framework to implement an efficient matrix-free version of the Levenberg-Marquardt (LM) algorithm, a longstanding method that finds popular use in nonlinear least-square minimization problems but which has seen little use in phase retrieval. Furthermore, we extend the basic LM algorithm so that it can be applied for general constrained optimization problems beyond just the least-square applications. Since we use AD, we only need to specify the physics-based forward model for a specific imaging application; the derivative terms are calculated automatically through matrix-vector products, without explicitly forming any large Jacobian or Gauss-Newton matrices. We demonstrate that this algorithm can be used to solve both the unconstrained ptychographic object retrieval problem and the constrained blind ptychographic object and probe retrieval problems, under both the Gaussian and Poisson noise models, and that this method outperforms best-in-class first-order ptychographic reconstruction methods: it provides excellent convergence guarantees with (in many cases) a superlinear rate of convergence, all with a computational cost comparable to, or lower than, the tested first-order algorithms.
95 - Junyao Guo , Gabriela Hug , 2016
Distributed optimization for solving non-convex Optimal Power Flow (OPF) problems in power systems has attracted tremendous attention in the last decade. Most studies are based on the geographical decomposition of IEEE test systems for verifying the feasibility of the proposed approaches. However, it is not clear if one can extrapolate from these studies that those approaches can be applied to very large-scale real-world systems. In this paper, we show, for the first time, that distributed optimization can be effectively applied to a large-scale real transmission network, namely, the Polish 2383-bus system for which no pre-defined partitions exist, by using a recently developed partitioning technique. More specifically, the problem solved is the AC OPF problem with geographical decomposition of the network using the Alternating Direction Method of Multipliers (ADMM) method in conjunction with the partitioning technique. Through extensive experimental results and analytical studies, we show that with the presented partitioning technique the convergence performance of ADMM can be improved substantially, which enables the application of distributed approaches on very large-scale systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا