No Arabic abstract
Distributed optimization for solving non-convex Optimal Power Flow (OPF) problems in power systems has attracted tremendous attention in the last decade. Most studies are based on the geographical decomposition of IEEE test systems for verifying the feasibility of the proposed approaches. However, it is not clear if one can extrapolate from these studies that those approaches can be applied to very large-scale real-world systems. In this paper, we show, for the first time, that distributed optimization can be effectively applied to a large-scale real transmission network, namely, the Polish 2383-bus system for which no pre-defined partitions exist, by using a recently developed partitioning technique. More specifically, the problem solved is the AC OPF problem with geographical decomposition of the network using the Alternating Direction Method of Multipliers (ADMM) method in conjunction with the partitioning technique. Through extensive experimental results and analytical studies, we show that with the presented partitioning technique the convergence performance of ADMM can be improved substantially, which enables the application of distributed approaches on very large-scale systems.
Recent studies have shown that multi-step optimization based on Model Predictive Control (MPC) can effectively coordinate the increasing number of distributed renewable energy and storage resources in the power system. However, the computation complexity of MPC is usually high which limits its use in practical implementation. To improve the efficiency of MPC, in this paper, we apply a distributed optimization method to MPC. The approach consists of a partitioning technique based on spectral clustering that determines the best system partition and an improved Optimality Condition Decomposition method that solves the optimization problem in a distributed manner. Results of simulations conducted on the IEEE 14-bus and 118-bus systems show that the distributed MPC problem can be solved significantly faster by using a good partition of the system and this partition is applicable to multiple time steps without frequent changes.
The event-driven and elastic nature of serverless runtimes makes them a very efficient and cost-effective alternative for scaling up computations. So far, they have mostly been used for stateless, data parallel and ephemeral computations. In this work, we propose using serverless runtimes to solve generic, large-scale optimization problems. Specifically, we build a master-worker setup using AWS Lambda as the source of our workers, implement a parallel optimization algorithm to solve a regularized logistic regression problem, and show that relative speedups up to 256 workers and efficiencies above 70% up to 64 workers can be expected. We also identify possible algorithmic and system-level bottlenecks, propose improvements, and discuss the limitations and challenges in realizing these improvements.
Network-distributed optimization has attracted significant attention in recent years due to its ever-increasing applications. However, the classic decentralized gradient descent (DGD) algorithm is communication-inefficient for large-scale and high-dimensional network-distributed optimization problems. To address this challenge, many compressed DGD-based algorithms have been proposed. However, most of the existing works have high complexity and assume compressors with bounded noise power. To overcome these limitations, in this paper, we propose a new differential-coded compressed DGD (DC-DGD) algorithm. The key features of DC-DGD include: i) DC-DGD works with general SNR-constrained compressors, relaxing the bounded noise power assumption; ii) The differential-coded design entails the same convergence rate as the original DGD algorithm; and iii) DC-DGD has the same low-complexity structure as the original DGD due to a {em self-noise-reduction effect}. Moreover, the above features inspire us to develop a hybrid compression scheme that offers a systematic mechanism to minimize the communication cost. Finally, we conduct extensive experiments to verify the efficacy of the proposed DC-DGD and hybrid compressor.
Scale of data and scale of computation infrastructures together enable the current deep learning renaissance. However, training large-scale deep architectures demands both algorithmic improvement and careful system configuration. In this paper, we focus on employing the system approach to speed up large-scale training. Via lessons learned from our routine benchmarking effort, we first identify bottlenecks and overheads that hinter data parallelism. We then devise guidelines that help practitioners to configure an effective system and fine-tune parameters to achieve desired speedup. Specifically, we develop a procedure for setting minibatch size and choosing computation algorithms. We also derive lemmas for determining the quantity of key components such as the number of GPUs and parameter servers. Experiments and examples show that these guidelines help effectively speed up large-scale deep learning training.
Large scale power systems are comprised of regional utilities with IIoT enabled assets that stream sensor readings in real time. In order to detect cyberattacks, the globally acquired, real time sensor data needs to be analyzed in a centralized fashion. However, owing to operational constraints, such a centralized sharing mechanism turns out to be a major obstacle. In this paper, we propose a blockchain based decentralized framework for detecting coordinated replay attacks with full privacy of sensor data. We develop a Bayesian inference mechanism employing locally reported attack probabilities that is tailor made for a blockchain framework. We compare our framework to a traditional decentralized algorithm based on the broadcast gossip framework both theoretically as well as empirically. With the help of experiments on a private Ethereum blockchain, we show that our approach achieves good detection quality and significantly outperforms gossip driven approaches in terms of accuracy, timeliness and scalability.