Do you want to publish a course? Click here

Thermodynamic length in open quantum systems

73   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The dissipation generated during a quasistatic thermodynamic process can be characterised by introducing a metric on the space of Gibbs states, in such a way that minimally-dissipating protocols correspond to geodesic trajectories. Here, we show how to generalize this approach to open quantum systems by finding the thermodynamic metric associated to a given Lindblad master equation. The obtained metric can be understood as a perturbation over the background geometry of equilibrium Gibbs states, which is induced by the Kubo-Mori-Bogoliubov (KMB) inner product. We illustrate this construction on two paradigmatic examples: an Ising chain and a two-level system interacting with a bosonic bath with different spectral densities.



rate research

Read More

432 - Umberto Lucia 2011
The variational method is very important in mathematical and theoretical physics because it allows us to describe the natural systems by physical quantities independently from the frame of reference used. A global and statistical approach have been introduced starting from non-equilibrium thermodynamics, obtaining the principle of maximum entropy generation for the open systems. This principle is a consequence of the lagrangian approach to the open systems. Here it will be developed a general approach to obtain the thermodynamic hamiltonian for the dynamical study of the open systems. It follows that the irreversibility seems to be the fundamental phenomenon which drives the evolution of the states of the open systems.
The resource theory of thermal operations, an established model for small-scale thermodynamics, provides an extension of equilibrium thermodynamics to nonequilibrium situations. On a lattice of any dimension with any translation-invariant local Hamiltonian, we identify a large set of translation-invariant states that can be reversibly converted to and from the thermal state with thermal operations and a small amount of coherence. These are the spatially ergodic states, i.e., states that have sharp statistics for any translation-invariant observable, and mixtures of such states with the same thermodynamic potential. As an intermediate result, we show for a general state that if the min- and the max-relative entropy to the thermal state coincide approximately, this implies the approximately reversible interconvertibility to and from the thermal state with thermal operations and a small source of coherence. Our results provide a strong link between the abstract resource theory of thermodynamics and more realistic physical systems, as we achieve a robust and operational characterization of the emergence of a thermodynamic potential in translation-invariant lattice systems.
Irreversibility is a fundamental concept with important implications at many levels. It pinpoints the fundamental difference between the intrinsically reversible microscopic equations of motion and the unidirectional arrow of time that emerges at the macroscopic level. More pragmatically, a full quantification of the degree of irreversibility of a given process can help in the characterisation of the performance of thermo-machines operating at the quantum level. Here, we review the concept of entropy production, which is commonly intended as {it the} measure of thermodynamic irreversibility of a process, pinpointing the features and shortcomings of its current formulation.
We derive a general scheme to obtain quantum fluctuation relations for dynamical observables in open quantum systems. For concreteness we consider Markovian non-unitary dynamics that is unraveled in terms of quantum jump trajectories, and exploit techniques from the theory of large deviations like the tilted ensemble and the Doob transform. Our results here generalise to open quantum systems fluctuation relations previously obtained for classical Markovian systems, and add to the vast literature on fluctuation relations in the quantum domain, but without resorting to the standard two-point measurement scheme. We illustrate our findings with three examples in order to highlight and discuss the main features of our general result.
If an open quantum system is initially uncorrelated from its environment, then its dynamics can be written in terms of a Lindblad-form master equation. The master equation is divided into a unitary piece, represented by an effective Hamiltonian, and a dissipative piece, represented by a hermiticity-preserving superoperator; however, the division of open system dynamics into unitary and dissipative pieces is non-unique. For finite-dimensional quantum systems, we resolve this non-uniqueness by specifying a norm on the space of dissipative superoperators and defining the canonical Hamiltonian to be the one whose dissipator is minimal. We show that the canonical Hamiltonian thus defined is equivalent to the Hamiltonian initially defined by Lindblad, and that it is uniquely specified by requiring the dissipators jump operators to be traceless. For a system weakly coupled to its environment, we give a recursive formula for computing the canonical effective Hamiltonian to arbitrary orders in perturbation theory, which we can think of as a perturbative scheme for renormalizing the systems bare Hamiltonian.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا