Do you want to publish a course? Click here

A new operating mode in experiments searching for free neutron-antineutron oscillations based on coherent neutron and antineutron mirror reflections

118   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

An observation of neutron-antineutron oscillations ($ n-bar{n}$), which violate both $B$ and $B-L$ conservation, would constitute a scientific discovery of fundamental importance to physics and cosmology. A stringent upper bound on its transition rate would make an important contribution to our understanding of the baryon asymmetry of the universe by eliminating the post-sphaleron baryogenesis scenario in the light quark sector. We show that one can design an experiment using slow neutrons that in principle can reach the required sensitivity of $tau_{n-bar{n}}sim 10^{10}s$ in the oscillation time, an improvement of $sim10^4$ in the oscillation probability relative to the existing limit for free neutrons. This can be achieved by allowing both the neutron and antineutron components of the developing superposition state to coherently reflect from mirrors. We present a quantitative analysis of this scenario and show that, for sufficiently small transverse momenta of $n/bar{n}$ and for certain choices of nuclei for the $n/bar{n}$ guide material, the relative phase shift of the $n$ and $bar{n}$ components upon reflection and the $bar{n}$ annihilation rate can be small.



rate research

Read More

151 - Yuri Kamyshkov 2002
Experimental observation of nucleon instability is one of the missing key components required for the explanation of baryon asymmetry of the universe. Proton decays with the modes and rates predicted by(B-L)-conserving schemes of Grand Unification are not observed experimentally. There are reasons to believe that (B-L) might not be conserved in nature, thus leading to the nucleon decay into lepton+(X) and to phenomena such as Majorana masses of neutrinos, neutrinoless double-beta decays, and most spectacularly to the transitions of neutron to anti-neutron. The energy scale where (B-L) violation takes place cannot be predicted by theory and therefore has to be explored by experiments. Different experimental approaches to searching for (B-L)-violating transition of neutron to antineutron are discussed in this paper. Most powerful search for neutron to antineutron transitions can be performed in a new reactor-based experiment at HFIR reactor (ORNL) where sensitivity can be >1,000 times higher than in the previous experiments.
Coherent forward neutron propagation in gas is discussed as a new approach to search for neutron-antineutron oscillations ($ n-bar{n}$), which violate both $B$ and $B-L$ conservation. We show that one can increase the probability of neutron - antineutron transitions to essentially the free neutron oscillation rate in the presence of a nonzero external magnetic field by tuning the density of an appropriate mixture of gases so that the neutron optical potential of the gas cancels that from an external magnetic field.
This paper summarizes the relevant theoretical developments, outlines some ideas to improve experimental searches for free neutron-antineutron oscillations, and suggests avenues for future improvement in the experimental sensitivity.
Fundamental symmetry tests of baryon number violation in low-energy experiments can probe beyond the Standard Model (BSM) explanations of the matter-antimatter asymmetry of the universe. Neutron-antineutron oscillations are predicted to be a signature of many baryogenesis mechanisms involving low-scale baryon number violation. This work presents first-principles calculations of neutron-antineutron matrix elements needed to accurately connect measurements of the neutron-antineutron oscillation rate to constraints on $|Delta B|=2$ baryon number violation in BSM theories. Several important systematic uncertainties are controlled by using a state-of-the-art lattice gauge field ensemble with physical quark masses and approximate chiral symmetry, performing nonperturbative renormalization with perturbative matching to the $overline{text{MS}}$ scheme, and studying excited state effects in two-state fits. Phenomenological implications are highlighted by comparing expected bounds from proposed neutron-antineutron oscillation experiments to predictions of a specific model of post-sphaleron baryogenesis. Quantum chromodynamics is found to predict at least an order of magnitude more events in neutron-antineutron oscillation experiments than previous estimates based on the MIT bag model for fixed BSM parameters. Lattice artifacts and other systematic uncertainties that are not controlled in this pioneering calculation are not expected to significantly change this conclusion.
This paper summarizes discussions of the theoretical developments and the studies performed by the NNbarX collaboration for the 2013 Snowmass Community Summer Study.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا