Do you want to publish a course? Click here

Stark quenching of rovibrational states of H2+ due to motion in a magnetic field

67   0   0.0 ( 0 )
 Added by Jean-Philippe Karr
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The motional electric field experienced by an H2+ ion moving in a magnetic field induces an electric dipole, so that one-photon dipole transitions between rovibrational states become allowed. Field induced spontaneous decay rates are calculated for a wide range of states. For an ion stored in a high-field (B ~ 10 T) Penning trap, it is shown that the lifetimes of excited rovibrational states can be shortened by typically 1-3 orders of magnitude by placing the ion in a large cyclotron orbit. This can greatly facilitate recently proposed [E. G. Myers, Phys. Rev. A 98, 010101 (2018)] high-precision spectroscopic measurements on H2+ and its antimatter counterpart for tests of CPT symmetry.



rate research

Read More

132 - J.C.J. Koelemeij 2011
A calculation of dynamic polarizabilities of rovibrational states with vibrational quantum number $v=0-7$ and rotational quantum number $J=0,1$ in the 1s$sigma_g$ ground-state potential of HD$^+$ is presented. Polarizability contributions by transitions involving other 1s$sigma_g$ rovibrational states are explicitly calculated, whereas contributions by electronic transitions are treated quasi-statically and partially derived from existing data [R.E. Moss and L. Valenzano, textit{Molec. Phys.}, 2002, textbf{100}, 1527]. Our model is valid for wavelengths $>4~mu$m and is used to to assess level shifts due to the blackbody radiation (BBR) electric field encountered in experimental high-resolution laser spectroscopy of trapped HD$^+$ ions. Polarizabilities of 1s$sigma_g$ rovibrational states obtained here agree with available existing accurate textit{ab initio} results. It is shown that the Stark effect due to BBR is dynamic and cannot be treated quasi-statically, as is often done in the case of atomic ions. Furthermore it is pointed out that the dynamic Stark shifts have tensorial character and depend strongly on the polarization state of the electric field. Numerical results of BBR-induced Stark shifts are presented, showing that Lamb-Dicke spectroscopy of narrow vibrational optical lines ($sim 10$ Hz natural linewidth) in HD$^+$ will become affected by BBR shifts only at the $10^{-16}$ level.
The $5S_{1/2}rightarrow 5D_{5/2}$ two-photon transition in Rb is of interest for the development of a compact optical atomic clock. Here we present a rigorous calculation of the 778.1~nm ac-Stark shift ($2.30(4) times10^{-13}$(mW/mm$^2$)$^{-1}$) that is in good agreement with our measured value of $2.5(2) times10^{-13}$(mW/mm$^2$)$^{-1}$. We include a calculation of the temperature-dependent blackbody radiation shift, we predict that the clock could be operated either with zero net BBR shift ($T=495.9(27)$~K) or with zero first-order sensitivity ($T=368.1(14)$~K). Also described is the calculation of the dc-Stark shift of 5.5(1)$times 10^{-15}$/(V/cm$^2$) as well as clock sensitivities to optical alignment variations in both a cats eye and flat mirror retro-reflector. Finally, we characterize these Stark effects discussing mitigation techniques necessary to reduce final clock instabilities.
The dicarbon molecular anion is currently of interest as a candidate for laser cooling due to its electronic structure and favorable branching ratios to the ground electronic and vibrational states. Helium has been proposed as a buffer gas to cool the molecules internal motion. We calculate the cross sections and corresponding rates for rovibrational inelastic collisions of the dicarbon anion with He, and also with Ne and Ar, on three-dimensional ab initio potential energy surfaces using quantum scattering theory. The rates for vibrational quenching with He and Ne are very small and are similar to those for small neutral molecules in collision with helium. The quenching rates for Ar, however, are far larger than those with the other noble gases, suggesting that this may be a more suitable gas for driving vibrational quenching in traps. The implications of these results for laser cooling of the dicarbon anion are discussed.
We demonstrate that transitions between Zeeman-split sublevels of Rb atoms are resonantly induced by the motion of the atoms (velocity: about 100 m/s) in a periodic magnetostatic field (period: 1 mm) when the Zeeman splitting corresponds to the frequency of the magnetic field experienced by the moving atoms. A circularly polarized laser beam polarizes Rb atoms with a velocity selected using the Doppler effect and detects their magnetic resonance in a thin cell, to which the periodic field is applied with the arrays of parallel current-carrying wires.
113 - Yan-mei Yu , B. K. Sahoo 2017
The microwave clock frequency of the $|5s~^2S_{1/2}, F=0,m_F=0 rangle leftrightarrow |5s~^2S_{1/2}, F=1,m_F=0 rangle$ transition in the $^{113}$Cd$^+$ ion has been reported as 15199862855.0192(10) Hz [Opt. Lett. {bf 40}, 4249 (2015)]. Fractional systematic due to the black-body radiation (BBR) shift ($beta$) arising from the Stark effect in the above clock transition was used as $-1.1 times 10^{-16}$ from our unpublished preliminary estimation. We present here a precise value as $beta=-1.815(77) times 10^{-16}$ by carrying out rigorous calculations of third-order polarizabilities of the hyperfine levels associated with the clock transition. This is determined by evaluating matrix elements of the magnetic dipole hyperfine interaction Hamiltonian, electric dipole operator and energies between many low-lying states of $^{113}$Cd$^+$. We employ all-order relativistic many-body theories in the frameworks of Fock-space coupled-cluster and relativistic multi-configuration Dirac-Fock methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا