Do you want to publish a course? Click here

Characteristic time scales of UV and IR auroral emissions at Jupiter and Saturn and their possible observable effects

68   0   0.0 ( 0 )
 Added by Chihiro Tao
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Different ultraviolet (UV) and infrared (IR) auroral features have been observed at Jupiter and Saturn. Using models related to UV and IR auroral emissions, we estimate the characteristic time scales for the emissions, and evaluate whether the observed differences between UV and IR emissions can be understood by the differences in the emission time scales. Based on the model results, the UV aurora at Jupiter and Saturn is directly related to excitation by auroral electrons that impact molecular H2, occurring over a time scale of 0.01 sec. The IR auroral emission involves several time scales: while the auroral ionization process and IR transitions occur over < 0.01 sec, the time scale for ion chemistry is much longer at 0.01-10000 sec. Associated atmospheric phenomena such as temperature variations and circulation are effective over time scales of > 10000 sec. That is, for events that have a time scale of ~100 sec, the ion chemistry, present in the IR but absent in the UV emission process, could play a key role in producing a different features at the two wavelengths. Applying these results to the observed Jovian polar UV intensification events and the Io footprint aurora indicates that whether the IR intensity varies in correlation with the UV or not depends on the number flux of electrons and their characteristic energy.



rate research

Read More

The spatial distribution and polarization of Saturn narrowband (NB) emissions have been studied by using Cassini Radio and Plasma Wave Sciences data and goniopolarimetric data obtained through an inversion algorithm with a preset source located at the center of Saturn. From 2004 January 1 to 2017 September 12, NB emissions were selected automatically by a computer program and rechecked manually. The spatial distribution shows a preference for high latitude and intensity peaks in the region within 6 Saturn radii for both 5 and 20 kHz NB emissions. 5 kHz NB emissions also show a local time preference roughly in the 18:00-22:00 sector. The Enceladus plasma torus makes it difficult for NB emissions to propagate to the low latitude regions outside the plasma torus. The extent of the low latitude regions where 5 and 20 kHz NB emissions were never observed is consistent with the corresponding plasma torus density contour in the meridional plane. 20 kHz NB emissions show a high circular polarization while 5 kHz NB emissions are less circularly polarized with |V|<0.6 for majority of the cases. And cases of 5kHz NB emissions with high circular polarization are more frequently observed at high latitude especially at the northern and southern edges of the Enceladus plasma torus.
We suggest that pairing of bouncing medium-energy electrons in the auroral upward current region close to the mirror points may play a role in driving the electron cyclotron maser instability to generate an escaping narrow band fine structure in the auroral kilometric radiation. We treat this mechanism in the gyrotron approximation, for simplicity using the extreme case of a weakly relativistic Dirac distribution instead the more realistic anisotropic Juttner distribution. Promising estimates of bandwidth, frequency drift and spatial location are given.
High energy particles originating from solar activity travel along the the Earths magnetic field and interact with the atmosphere around the higher latitudes. These interactions often manifest as aurora in the form of visible light in the Earths ionosphere. These interactions also result in irregularities in the electron density, which cause disruptions in the amplitude and phase of the radio signals from the Global Navigation Satellite Systems (GNSS), known as scintillation. In this paper we use a multi-scale residual autoencoder (Res-AE) to show the correlation between specific dynamic structures of the aurora and the magnitude of the GNSS phase scintillations ($sigma_{phi}$). Auroral images are encoded in a lower dimensional feature space using the Res-AE, which in turn are clustered with t-SNE and UMAP. Both methods produce similar clusters, and specific clusters demonstrate greater correlations with observed phase scintillations. Our results suggest that specific dynamic structures of auroras are highly correlated with GNSS phase scintillations.
Switchbacks (rotations of the magnetic field) are observed on the Parker Solar Probe. Their evolution, content, and plasma effects are studied in this paper. The solar wind does not receive a net acceleration from switchbacks that it encountered upstream of the observation point. The typical switchback rotation angle increased with radial distance. Significant Poynting fluxes existed inside, but not outside, switchbacks and they are related to the increased EXB/B2 flow caused by the magnetic field rotating to become more perpendicular to the flow direction. (Outside the switchbacks, the magnetic field and solar wind flow were generally radial.) The solar wind flow inside switchbacks was faster than that outside due to the frozen-in ions moving with the magnetic structure at the Alfven speed. This energy gain results from the divergence of the Poynting flux from outside to inside the switchback, which produces a loss of electromagnetic energy on switchback entry and recovery of that energy on exit, with the lost energy appearing in the plasma flow. Switchbacks contain 0.3-10 Hz waves that may result from currents and the Kelvin-Helmholtz instability that occurs at the switchback boundaries. These waves may combine with lower frequency MHD waves to heat the plasma. The radial decreases of the Poynting flux and solar wind speed inside switchbacks are due to a geometrical effect.
We derive fast forward interplanetary (IP) shock speeds and impact angles to study the geoeffectivness of 461 IP shocks that occurred from January 1995 to December 2013 using ACE and WIND spacecraft data. The geomagnetic activity is inferred from the SuperMAG project data. SuperMAG is a large chain which employs more than 300 ground stations to compute enhanc
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا