We derive fast forward interplanetary (IP) shock speeds and impact angles to study the geoeffectivness of 461 IP shocks that occurred from January 1995 to December 2013 using ACE and WIND spacecraft data. The geomagnetic activity is inferred from the SuperMAG project data. SuperMAG is a large chain which employs more than 300 ground stations to compute enhanc
Non-thermal pickup ions (PUIs) are created in the solar wind (SW) by charge-exchange between SW ions (SWIs) and slow interstellar neutral atoms. It has long been theorized, but not directly observed, that PUIs should be preferentially heated at quasi-perpendicular shocks compared to thermal SWIs. We present in situ observations of interstellar hydrogen (H+) PUIs at an interplanetary shock by the New Horizons Solar Wind Around Pluto (SWAP) instrument at ~34 au from the Sun. At this shock, H+ PUIs are only a few percent of the total proton density but contain most of the internal particle pressure. A gradual reduction in SW flow speed and simultaneous heating of H+ SWIs is observed ahead of the shock, suggesting an upstream energetic particle pressure gradient. H+ SWIs lose ~85% of their energy flux across the shock and H+ PUIs are preferentially heated. Moreover, a PUI tail is observed downstream of the shock, such that the energy flux of all H+ PUIs is approximately six times that of H+ SWIs. We find that H+ PUIs, including their suprathermal tail, contain almost half of the total downstream energy flux in the shock frame.
An interplanetary (IP) shock wave was recorded crossing the Magnetospheric Multiscale (MMS) constellation on 2018 January 8. Plasma measurements upstream of the shock indicate efficient proton acceleration in the IP shock ramp: 2-7 keV protons are observed upstream for about three minutes (~8000 km) ahead of the IP shock ramp, outrunning the upstream waves. The differential energy flux (DEF) of 2-7 keV protons decays slowly with distance from the ramp towards the upstream region (dropping by about half within 8 Earth radii from the ramp) and is lessened by a factor of about four in the downstream compared to the ramp (within a distance comparable to the gyroradius of ~keV protons). Comparison with test-particle simulations has confirmed that the mechanism accelerating the solar wind protons and injecting them upstream is classical shock drift acceleration. This example of observed proton acceleration by a low-Mach, quasi-perpendicular shock may be applicable to astrophysical contexts, such as supernova remnants or the acceleration of cosmic rays.
We present waveform observations of electromagnetic lower hybrid and whistler waves with f_ci << f < f_ce downstream of four supercritical interplanetary (IP) shocks using the Wind search coil magnetometer. The whistler waves were observed to have a weak positive correlation between partialB and normalized heat flux magnitude and an inverse correlation with T_eh/T_ec. All were observed simultaneous with electron distributions satisfying the whistler heat flux instability threshold and most with T_{perp,h}/T_{para,h} > 1.01. Thus, the whistler mode waves appear to be driven by a heat flux instability and cause perpendicular heating of the halo electrons. The lower hybrid waves show a much weaker correlation between partialB and normalized heat flux magnitude and are often observed near magnetic field gradients. A third type of event shows fluctuations consistent with a mixture of both lower hybrid and whistler mode waves. These results suggest that whistler waves may indeed be regulating the electron heat flux and the halo temperature anisotropy, which is important for theories and simulations of electron distribution evolution from the sun to the earth.
Recent in-situ and remote observations suggest that the transport regime associated with shock accelerated particles may be anomalous {i.e., the Mean Square Displacement (MSD) of such particles scales non-linearly with time}. We use self-consistent, hybrid PIC plasma simulations to simulate a quasi-parallel shock with parameters compatible with heliospheric shocks, and gain insights about the particle transport in such a system. For suprathermal particles interacting with the shock we compute the MSD separately in the upstream and downstream regions. Tracking suprathermal particles for sufficiently long times up and/or downstream of the shock poses problems in particle plasma simulations, such as statistically poor particle ensembles and trajectory fragments of variable length in time. Therefore, we introduce the use of time-averaged mean square displacement (TAMSD), which is based on single particle trajectories, as an additional technique to address the transport regime for the upstream and downstream regions. MSD and TAMSD are in agreement for the upstream energetic particle population, and both give a strong indication of superdiffusive transport, consistent with interplanetary shock observations. MSD and TAMSD are also in reasonable agreement downstream, where indications of anomalous transport are also found. TAMSD shows evidence of heterogeneity in the diffusion properties of the downstream particle population, ranging from subdiffusive behaviour of particles trapped in the strong magnetic field fluctuations generated at the shock, to superdiffusive behaviour of particles transmitted and moving away from the shock.
The propagation of Langmuir waves in plasmas is known to be sensitive to density fluctuations. Such fluctuations may lead to the coexistence of wave pairs that have almost opposite wave-numbers in the vicinity of their reflection points. Using high frequency electric field measurements from the WIND satellite, we determine for the first time the wavelength of intense Langmuir wave packets that are generated upstream of the Earths electron foreshock by energetic electron beams. Surprisingly, the wavelength is found to be 2 to 3 times larger than the value expected from standard theory. These values are consistent with the presence of strong inhomogeneities in the solar wind plasma rather than with the effect of weak beam instabilities.
D. M. Oliveira
,J. Raeder
,B. T. Tsurutani
.
(2015)
.
"Effects of interplanetary shock inclinations on nightside auroral power intensity"
.
Denny Oliveira
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا