No Arabic abstract
Hybrid classical-quantum algorithms aim at variationally solving optimisation problems, using a feedback loop between a classical computer and a quantum co-processor, while benefitting from quantum resources. Here we present experiments demonstrating self-verifying, hybrid, variational quantum simulation of lattice models in condensed matter and high-energy physics. Contrary to analog quantum simulation, this approach forgoes the requirement of realising the targeted Hamiltonian directly in the laboratory, thus allowing the study of a wide variety of previously intractable target models. Here, we focus on the Lattice Schwinger model, a gauge theory of 1D quantum electrodynamics. Our quantum co-processor is a programmable, trapped-ion analog quantum simulator with up to 20 qubits, capable of generating families of entangled trial states respecting symmetries of the target Hamiltonian. We determine ground states, energy gaps and, by measuring variances of the Schwinger Hamiltonian, we provide algorithmic error bars for energies, thus addressing the long-standing challenge of verifying quantum simulation.
Solving finite-temperature properties of quantum many-body systems is generally challenging to classical computers due to their high computational complexities. In this article, we present experiments to demonstrate a hybrid quantum-classical simulation of thermal quantum states. By combining a classical probabilistic model and a 5-qubit programmable superconducting quantum processor, we prepare Gibbs states and excited states of Heisenberg XY and XXZ models with high fidelity and compute thermal properties including the variational free energy, energy, and entropy with a small statistical error. Our approach combines the advantage of classical probabilistic models for sampling and quantum co-processors for unitary transformations. We show that the approach is scalable in the number of qubits, and has a self-verifiable feature, revealing its potentials in solving large-scale quantum statistical mechanics problems on near-term intermediate-scale quantum computers.
We develop a quantum simulator architecture that is suitable for the simulation of $U(1)$ Abelian gauge theories such as quantum electrodynamics. Our approach relies on the ability to control the hopping of a particle through a barrier by means of the internal quantum states of a neutral or charged impurity-particle sitting at the barrier. This scheme is experimentally feasible, as the correlated hopping does not require fine-tuning of the intra- and inter-species interactions. We investigate the applicability of the scheme in a double well potential, which is the basic building block of the simulator, both at the single-particle and the many-body mean-field level. Moreover, we evaluate its performance for different particle interactions and trapping, and, specifically for atom-ion systems, in the presence of micro-motion.
Learning the structure of the entanglement Hamiltonian (EH) is central to characterizing quantum many-body states in analog quantum simulation. We describe a protocol where spatial deformations of the many-body Hamiltonian, physically realized on the quantum device, serve as an efficient variational ansatz for a local EH. Optimal variational parameters are determined in a feedback loop, involving quench dynamics with the deformed Hamiltonian as a quantum processing step, and classical optimization. We simulate the protocol for the ground state of Fermi-Hubbard models in quasi-1D geometries, finding excellent agreement of the EH with Bisognano-Wichmann predictions. Subsequent on-device spectroscopy enables a direct measurement of the entanglement spectrum, which we illustrate for a Fermi Hubbard model in a topological phase.
Aiming at a better understanding of anomalous and topological effects in gauge theories out-of-equilibrium, we study the real-time dynamics of a prototype model for CP-violation, the massive Schwinger model with a $theta$-term. We identify dynamical quantum phase transitions between different topological sectors that appear after sufficiently strong quenches of the $theta$-parameter. Moreover, we establish a general dynamical topological order parameter, which can be accessed through fermion two-point correlators and, importantly, which can be applied for interacting theories. Enabled by this result, we show that the topological transitions persist beyond the weak-coupling regime. Finally, these effects can be observed with table-top experiments based on existing cold-atom, superconducting-qubit, and trapped-ion technology. Our work, thus, presents a significant step towards quantum simulating topological and anomalous real-time phenomena relevant to nuclear and high-energy physics.
We present simulations of non-equilibrium dynamics of quantum field theories on digital quantum computers. As a representative example, we consider the Schwinger model, a 1+1 dimensional U(1) gauge theory, coupled through a Yukawa-type interaction to a thermal environment described by a scalar field theory. We use the Hamiltonian formulation of the Schwinger model discretized on a spatial lattice. With the thermal scalar fields traced out, the Schwinger model can be treated as an open quantum system and its real-time dynamics are governed by a Lindblad equation in the Markovian limit. The interaction with the environment ultimately drives the system to thermal equilibrium. In the quantum Brownian motion limit, the Lindblad equation is related to a field theoretical Caldeira-Leggett equation. By using the Stinespring dilation theorem with ancillary qubits, we perform studies of both the non-equilibrium dynamics and the preparation of a thermal state in the Schwinger model using IBMs simulator and quantum devices. The real-time dynamics of field theories as open quantum systems and the thermal state preparation studied here are relevant for a variety of applications in nuclear and particle physics, quantum information and cosmology.