Do you want to publish a course? Click here

Quantum Simulation of Abelian Lattice Gauge Theories via State-Dependent Hopping

177   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop a quantum simulator architecture that is suitable for the simulation of $U(1)$ Abelian gauge theories such as quantum electrodynamics. Our approach relies on the ability to control the hopping of a particle through a barrier by means of the internal quantum states of a neutral or charged impurity-particle sitting at the barrier. This scheme is experimentally feasible, as the correlated hopping does not require fine-tuning of the intra- and inter-species interactions. We investigate the applicability of the scheme in a double well potential, which is the basic building block of the simulator, both at the single-particle and the many-body mean-field level. Moreover, we evaluate its performance for different particle interactions and trapping, and, specifically for atom-ion systems, in the presence of micro-motion.



rate research

Read More

We show how engineered classical noise can be used to generate constrained Hamiltonian dynamics in atomic quantum simulators of many-body systems, taking advantage of the continuous Zeno effect. After discussing the general theoretical framework, we focus on applications in the context of lattice gauge theories, where imposing exotic, quasi-local constraints is usually challenging. We demonstrate the effectiveness of the scheme for both Abelian and non-Abelian gauge theories, and discuss how engineering dissipative constraints substitutes complicated, non-local interaction patterns by global coupling to laser fields.
Lattice gauge theories, which originated from particle physics in the context of Quantum Chromodynamics (QCD), provide an important intellectual stimulus to further develop quantum information technologies. While one long-term goal is the reliable quantum simulation of currently intractable aspects of QCD itself, lattice gauge theories also play an important role in condensed matter physics and in quantum information science. In this way, lattice gauge theories provide both motivation and a framework for interdisciplinary research towards the development of special purpose digital and analog quantum simulators, and ultimately of scalable universal quantum computers. In this manuscript, recent results and new tools from a quantum science approach to study lattice gauge theories are reviewed. Two new complementary approaches are discussed: first, tensor network methods are presented - a classical simulation approach - applied to the study of lattice gauge theories together with some results on Abelian and non-Abelian lattice gauge theories. Then, recent proposals for the implementation of lattice gauge theory quantum simulators in different quantum hardware are reported, e.g., trapped ions, Rydberg atoms, and superconducting circuits. Finally, the first proof-of-principle trapped ions experimental quantum simulations of the Schwinger model are reviewed.
We describe the simulation of dihedral gauge theories on digital quantum computers. The nonabelian discrete gauge group $D_N$ -- the dihedral group -- serves as an approximation to $U(1)timesmathbb{Z}_2$ lattice gauge theory. In order to carry out such a lattice simulation, we detail the construction of efficient quantum circuits to realize basic primitives including the nonabelian Fourier transform over $D_N$, the trace operation, and the group multiplication and inversion operations. For each case the required quantum resources scale linearly or as low-degree polynomials in $n=log N$. We experimentally benchmark our gates on the Rigetti Aspen-9 quantum processor for the case of $D_4$. The fidelity of all $D_4$ gates was found to exceed $80%$.
The design of quantum many body systems, which have to fulfill an extensive number of constraints, appears as a formidable challenge within the field of quantum simulation. Lattice gauge theories are a particular important class of quantum systems with an extensive number of local constraints and play a central role in high energy physics, condensed matter and quantum information. Whereas recent experimental progress points towards the feasibility of large-scale quantum simulation of Abelian gauge theories, the quantum simulation of non-Abelian gauge theories appears still elusive. In this paper we present minimal non-Abelian lattice gauge theories, whereby we introduce the necessary formalism in well-known Abelian gauge theories, such as the Jaynes-Cumming model. In particular, we show that certain minimal non-Abelian lattice gauge theories can be mapped to three or four level systems, for which the design of a quantum simulator is standard with current technologies. Further we give an upper bound for the Hilbert space dimension of a one dimensional SU(2) lattice gauge theory, and argue that the implementation with current digital quantum computer appears feasible.
The quest of utilizing neutral particles to simulate the behaviour of charged particles in a magnetic field makes the generation of artificial magnetic field of great interest. The previous and the only proposal for the production of synthetic magnetic field for the dark state polaritons in electromagnetically induced transparency invokes the mechanical rotation of a sample. Here, we put forward an optical scheme to generate effective gauge potentials for stationary-light polaritons. 5To demonstrate the capabilities of our approach, we present recipes for having dark state polaritons in degenerate Landau levels and in driven quantum harmonic oscillator. Our scheme paves a novel way towards the investigation of the bosonic analogue of the fractional quantum Hall effect by electromagnetically induced transparency.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا