Do you want to publish a course? Click here

Coulomb blockade in an atomically thin quantum dot coupled to a tunable Fermi reservoir

180   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Gate-tunable quantum-mechanical tunnelling of particles between a quantum confined state and a nearby Fermi reservoir of delocalized states has underpinned many advances in spintronics and solid-state quantum optics. The prototypical example is a semiconductor quantum dot separated from a gated contact by a tunnel barrier. This enables Coulomb blockade, the phenomenon whereby electrons or holes can be loaded one-by-one into a quantum dot. Depending on the tunnel-coupling strength, this capability facilitates single spin quantum bits or coherent many-body interactions between the confined spin and the Fermi reservoir. Van der Waals (vdW) heterostructures, in which a wide range of unique atomic layers can easily be combined, offer novel prospects to engineer coherent quantum confined spins, tunnel barriers down to the atomic limit or a Fermi reservoir beyond the conventional flat density of states. However, gate-control of vdW nanostructures at the single particle level is needed to unlock their potential. Here we report Coulomb blockade in a vdW heterostructure consisting of a transition metal dichalcogenide quantum dot coupled to a graphene contact through an atomically thin hexagonal boron nitride (hBN) tunnel barrier. Thanks to a tunable Fermi reservoir, we can deterministically load either a single electron or a single hole into the quantum dot. We observe hybrid excitons, composed of localized quantum dot states and delocalized continuum states, arising from ultra-strong spin-conserving tunnel coupling through the atomically thin tunnel barrier. Probing the charged excitons in applied magnetic fields, we observe large gyromagnetic ratios (~8). Our results establish a foundation for engineering next-generation devices to investigate either novel regimes of Kondo physics or isolated quantum bits in a vdW heterostructure platform.



rate research

Read More

228 - S. Amasha , I. G. Rau , M. Grobis 2010
We report the observation of Coulomb blockade in a quantum dot contacted by two quantum point contacts each with a single fully-transmitting mode, a system previously thought to be well described without invoking Coulomb interactions. At temperatures below 50 mK we observe a periodic oscillation in the conductance of the dot with gate voltage that corresponds to a residual quantization of charge. From the temperature and magnetic field dependence, we infer the oscillations are Mesoscopic Coulomb Blockade, a type of Coulomb blockade caused by electron interference in an otherwise open system.
Two strongly coupled quantum dots are theoretically and experimentally investigated. In the conductance measurements of a GaAs based low-dimensional system additional features to the Coulomb blockade have been detected at low temperatures. These regions of finite conductivity are compared with theoretical investigations of a strongly coupled quantum dot system and good agreement of the theoretical and the experimental results has been found.
The dynamics of a mobile quantum impurity in a degenerate Fermi system is a fundamental problem in many-body physics. The interest in this field has been renewed due to recent ground-breaking experiments with ultra-cold Fermi gases. Optical creation of an exciton or a polariton in a two-dimensional electron system embedded in a microcavity constitutes a new frontier for this field due to an interplay between cavity-coupling favoring ultra-low mass polariton formation and exciton-electron interactions leading to polaron or trion formation. Here, we present cavity spectroscopy of gate-tunable monolayer MoSe$_2$ exhibiting strongly bound trion and polaron resonances, as well as non-perturbative coupling to a single microcavity mode. As the electron density is increased, the oscillator strength determined from the polariton splitting is gradually transferred from the higher-energy repulsive-exciton-polaron resonance to the lower-energy attractive-polaron manifold. Simultaneous observation of polariton formation in both attractive and repulsive branches indicate a new regime of polaron physics where the polariton impurity mass is much smaller than that of the electrons. Our findings shed new light on optical response of semiconductors in the presence of free carriers by identifying the Fermi polaron nature of excitonic resonances and constitute a first step in investigation of a new class of degenerate Bose-Fermi mixtures.
83 - Po Zhang , Hao Wu , Jun Chen 2021
We design and investigate an experimental system capable of entering an electron transport blockade regime in which a spin-triplet localized in the path of current is forbidden from entering a spin-singlet superconductor. To stabilize the triplet a double quantum dot is created electrostatically near a superconducting lead in an InAs nanowire. The dots are filled stochastically with electrons of either spin. The superconducting lead is a molecular beam epitaxy grown Al shell. The shell is etched away over a wire segment to make room for the double dot and the normal metal gold lead. The quantum dot closest to the normal lead exhibits Coulomb diamonds, the dot closest to the superconducting lead exhibits Andreev bound states and an induced gap. The experimental observations compare favorably to a theoretical model of Andreev blockade, named so because the triplet double dot configuration suppresses Andreev reflections. Observed leakage currents can be accounted for by finite temperature. We observe the predicted quadruple level degeneracy points of high current and a periodic conductance pattern controlled by the occupation of the normal dot. Even-odd transport asymmetry is lifted with increased temperature and magnetic field. This blockade phenomenon can be used to study spin structure of superconductors. It may also find utility in quantum computing devices that utilize Andreev or Majorana states.
We report on Coulomb blockade and Coulomb diamond measurements on an etched, tunable single-layer graphene quantum dot. The device consisting of a graphene island connected via two narrow graphene constrictions is fully tunable by three lateral graphene gates. Coulomb blockade resonances are observed and from Coulomb diamond measurements a charging energy of ~3.5 meV is extracted. For increasing temperatures we detect a peak broadening and a transmission increase of the nanostructured graphene barriers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا