Do you want to publish a course? Click here

Constructing Holder maps to Carnot groups

75   0   0.0 ( 0 )
 Added by Robert Young
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we construct Holder maps to Carnot groups equipped with a Carnot metric, especially the first Heisenberg group $mathbb{H}$. Pansu and Gromov observed that any surface embedded in $mathbb{H}$ has Hausdorff dimension at least 3, so there is no $alpha$-Holder embedding of a surface into $mathbb{H}$ when $alpha>frac{2}{3}$. Zust improved this result to show that when $alpha>frac{2}{3}$, any $alpha$-Holder map from a simply-connected Riemannian manifold to $mathbb{H}$ factors through a metric tree. In the present paper, we show that Zusts result is sharp by constructing $(frac{2}{3}-epsilon)$-Holder maps from $D^2$ and $D^3$ to $mathbb{H}$ that do not factor through a tree. We use these to show that if $0<alpha < frac{2}{3}$, then the set of $alpha$-Holder maps from a compact metric space to $mathbb{H}$ is dense in the set of continuous maps and to construct proper degree-1 maps from $mathbb{R}^3$ to $mathbb{H}$ with Holder exponents arbitrarily close to $frac{2}{3}$.

rate research

Read More

125 - Nicolas Juillet 2016
The Whitney extension theorem is a classical result in analysis giving a necessary and sufficient condition for a function defined on a closed set to be extendable to the whole space with a given class of regularity. It has been adapted to several settings, among which the one of Carnot groups. However, the target space has generally been assumed to be equal to R^d for some d $ge$ 1. We focus here on the extendability problem for general ordered pairs (G_1,G_2) (with G_2 non-Abelian). We analyze in particular the case G_1 = R and characterize the groups G_2 for which the Whitney extension property holds, in terms of a newly introduced notion that we call pliability. Pliability happens to be related to rigidity as defined by Bryant an Hsu. We exploit this relation in order to provide examples of non-pliable Carnot groups, that is, Carnot groups so that the Whitney extension property does not hold. We use geometric control theory results on the accessibility of control affine systems in order to test the pliability of a Carnot group. In particular, we recover some recent results by Le Donne, Speight and Zimmermann about Lusin approximation in Carnot groups of step 2 and Whitney extension in Heisenberg groups. We extend such results to all pliable Carnot groups, and we show that the latter may be of arbitrarily large step.
In this paper we introduce the notion of horizontally affine, h-affine in short, function and give a complete description of such functions on step-2 Carnot algebras. We show that the vector space of h-affine functions on the free step-2 rank-$n$ Carnot algebra is isomorphic to the exterior algebra of $mathbb{R}^n$. Using that every Carnot algebra can be written as a quotient of a free Carnot algebra, we shall deduce from the free case a description of h-affine functions on arbitrary step-2 Carnot algebras, together with several characterizations of those step-2 Carnot algebras where h-affine functions are affine in the usual sense of vector spaces. Our interest for h-affine functions stems from their relationship with a class of sets called precisely monotone, recently introduced in the literature, as well as from their relationship with minimal hypersurfaces.
We give a construction of direct limits in the category of complete metric scalable groups and provide sufficient conditions for the limit to be an infinite-dimensional Carnot group. We also prove a Rademacher-type theorem for such limits.
We continue to develop a program in geometric measure theory that seeks to identify how measures in a space interact with canonical families of sets in the space. In particular, extending a theorem of the first author and R. Schul in Euclidean space, for an arbitrary locally finite Borel measure in an arbitrary Carnot group, we develop tests that identify the part of the measure that is carried by rectifiable curves and the part of the measure that is singular to rectifiable curves. Our main result is entwined with an extension of the Analysts Traveling Salesman Theorem, which characterizes subsets of rectifiable curves in $mathbb{R}^2$ (P. Jones, 1990), in $mathbb{R}^n$ (K. Okikolu, 1992), or in an arbitrary Carnot group (the second author) in terms of local geometric least squares data called Jones $beta$-numbers. In a secondary result, we implement the Garnett-Killip-Schul construction of a doubling measure in $mathbb{R}^n$ that charges a rectifiable curve in an arbitrary complete, quasiconvex, doubling metric space.
In this paper we prove the one-dimensional Preiss theorem in the first Heisenberg group $mathbb H^1$. More precisely we show that a Radon measure $phi$ on $mathbb H^1$ with positive and finite one-density with respect to the Koranyi distance is supported on a one-rectifiable set in the sense of Federer, i.e., it is supported on the countable union of the images of Lipschitz maps $Asubseteq mathbb Rtomathbb H^1$. The previous theorem is a consequence of a Marstrand-Mattila type rectifiability criterion, which we prove in arbitrary Carnot groups for measures with tangent planes that admit a normal complementary subgroup. Namely, in this co-normal case, even if we a priori ask that the tangent planes at a point might rotate at different scales, a posteriori the measure has a unique tangent almost everywhere. Since every horizontal subgroup has a normal complement, our criterion applies in the particular case of one-dimensional horizontal subgroups. These results are the outcome of a detailed study of a new notion of rectifiability: we say that a Radon measure on a Carnot group is $mathscr{P}_h$-rectifiable, for $hinmathbb N$, if it has positive $h$-lower density and finite $h$-upper density almost everywhere, and, at almost every point, it admits as tangent measures only (multiple of) the Haar measure of a homogeneous subgroup of Hausdorff dimension $h$. We also prove several structure properties of $mathscr{P}_h$-rectifiable measures. First, we compare $mathscr{P}_h$-rectifiability with other notions of rectifiability previously known in the literature in the setting of Carnot groups and we realize that it is strictly weaker than them. Furthermore, we show that a $mathscr{P}_h$-rectifiable measure has almost everywhere positive and finite $h$-density whenever the tangents admit at least one complementary subgroup.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا