No Arabic abstract
In wireless communication systems, Quality of Service (QoS) is one of the most important issues from both the users and operators point of view. All the parameters related to QoS are not same important for all users and applications. The satisfaction level of different users also does not depend on same QoS parameters. In this paper, we discuss the QoS parameters and then propose a priority order of QoS parameters based on protocol layers and service applications. We present the relation among the QoS parameters those influence the performance of other QoS parameters and, finally, we demonstrate the numerical analysis results for our proposed soft-QoS scheme to reduce the dropped call rate which is the most important QoS parameter for all types of services
Wireless sensor/actuator networks (WSANs) are emerging rapidly as a new generation of sensor networks. Despite intensive research in wireless sensor networks (WSNs), limited work has been found in the open literature in the field of WSANs. In particular, quality-of-service (QoS) management in WSANs remains an important issue yet to be investigated. As an attempt in this direction, this paper develops a fuzzy logic control based QoS management (FLC-QM) scheme for WSANs with constrained resources and in dynamic and unpredictable environments. Taking advantage of the feedback control technology, this scheme deals with the impact of unpredictable changes in traffic load on the QoS of WSANs. It utilizes a fuzzy logic controller inside each source sensor node to adapt sampling period to the deadline miss ratio associated with data transmission from the sensor to the actuator. The deadline miss ratio is maintained at a pre-determined desired level so that the required QoS can be achieved. The FLC-QM has the advantages of generality, scalability, and simplicity. Simulation results show that the FLC-QM can provide WSANs with QoS support.
The problem of quality of service (QoS) and jamming-aware communications is considered in an adversarial wireless network subject to external eavesdropping and jamming attacks. To ensure robust communication against jamming, an interference-aware routing protocol is developed that allows nodes to avoid communication holes created by jamming attacks. Then, a distributed cooperation framework, based on deep reinforcement learning, is proposed that allows nodes to assess network conditions and make deep learning-driven, distributed, and real-time decisions on whether to participate in data communications, defend the network against jamming and eavesdropping attacks, or jam other transmissions. The objective is to maximize the network performance that incorporates throughput, energy efficiency, delay, and security metrics. Simulation results show that the proposed jamming-aware routing approach is robust against jamming and when throughput is prioritized, the proposed deep reinforcement learning approach can achieve significant (measured as three-fold) increase in throughput, compared to a benchmark policy with fixed roles assigned to nodes.
The area of quality of service (QoS) in communications networks has been the target of research for already several decades with tens of thousands of published journal and conference papers. However, the practical introduction of QoS systems in commercial networks has been limited (with a preference for simple overprovisioning). Despite this dissonance, most influential QoS papers do not discuss this lack of penetration or challenge any of the common assumptions used to argue for QoS systems. So far, the few critical QoS papers have had only a minor effect on QoS research and standardization. Therefore, there is a serious risk that QoS will remain an academic research topic without significant practical relevance. To help elucidate these issues, in this work, we first perform a comprehensive review of QoS including a general overview and an analysis of both influential and critical work from the past 30 years. We examine properties such as citations, keywords, and author traits to show that QoS has passed through several distinct phases with different topics while maintaining the overall attitude towards the role and objective of QoS systems. We then discuss QoS as a social phenomenon and in the context of current networking standards. Finally, we propose a QoS scheme based on incentives that avoids some of the problems identified in critical work, and we provide simple recommendations for network operators. Overall, we hope to spark the community to take a fresh look at QoS.
We revisit the long-standing problem of providing network QoS to applications, and propose the concept of judicious QoS -- combining the cheaper, best effort IP service with the cloud, which offers a highly reliable infrastructure and the ability to add in-network services, albeit at higher cost. Our proposed J-QoS framework offers a range of reliability services with different cost vs. delay trade-offs, including: i) a forwarding service that forwards packets over the cloud overlay, ii) a caching service, which stores packets inside the cloud and allows them to be pulled in case of packet loss or disruption on the Internet, and iii) a novel coding service that provides the least expensive packet recovery option by combining packets of multiple application streams and sending a small number of coded packets across the more expensive cloud paths. We demonstrate the feasibility of these services using measurements from RIPE Atlas and a live deployment on PlanetLab. We also consider case studies on how J-QoS works with services up and down the network stack, including Skype video conferencing, TCP-based web transfers, and cellular access networks.
Quality of Service (QoS) in the IP world mainly manages forwarding resources, i.e., link capacities and buffer spaces. In addition, Information Centric Networking (ICN) offers resource dimensions such as in-network caches and forwarding state. In constrained wireless networks, these resources are scarce with a potentially high impact due to lossy radio transmission. In this paper, we explore the two basic service qualities (i) prompt and (ii) reliable traffic forwarding for the case of NDN. The resources we take into account are forwarding and queuing priorities, as well as the utilization of caches and of forwarding state space. We treat QoS resources not only in isolation, but correlate their use on local nodes and between network members. Network-wide coordination is based on simple, predefined QoS code points. Our findings indicate that coordinated QoS management in ICN is more than the sum of its parts and exceeds the impact QoS can have in the IP world.