Do you want to publish a course? Click here

Magnetic field direction dependent antiskyrmion motion with microwave electric fields

112   0   0.0 ( 0 )
 Added by Chengkun Song
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic skyrmions are regarded as promising information candidates in future spintronic devices, which have been investigated theoretically and experimentally in isotropic system. Recently, the sta- bilization of antiskyrmions in the presence of anisotropic Dzyaloshinskii-Moriya interaction and its dynamics driven by current have been investigated. Here, we report the antiskyrmion motion with the combined action of the in-plane magnetic field and microwave electric fields. The in-plane mag- netic field breaks the rotation symmetry of the antiskyrmion, and perpendicular microwave electric field induces the pumping of magnetic anisotropy, leading to antiskyrmion breathing mode. With above two effects, the antiskyrmion propagates with a desired trajectory. Antiskyrmion propagation velocity depends on the frequency, amplitude of anisotropy pumping, and damping constant as well as strength of in-plane field, which reaches the maximum value when the frequency of microwave electric field is in consist with the resonance frequency of antiskyrmion. Moreover, we show that the antiskyrmion propagation depends on the direction of magnetic field, where the antiskyrmion Hall angle can be suppressed or enhanced. At a critical direction of magnetic field, the Hall angle is zero. Our results introduce a possible application of antiskyrmion in antiskyrmion-based spintronic devices with lower energy consumption.



rate research

Read More

85 - K. R. Brown , L. Sun , 2006
We present observations of background charge fluctuators near an Al-AlO_x-Al single-electron transistor on an oxidized Si substrate. The transistor design incorporates a heavily doped substrate and top gate, which allow for independent control of the substrate and transistor island potentials. Through controlled charging of the Si/SiO_2 interface we show that the fluctuators cannot reside in the Si layer or in the tunnel barriers. Combined with the large measured signal amplitude, this implies that the defects must be located very near the oxide surface.
The artificial gauge field for electrically neutral exciton polaritons devoid from the polarization degree of freedom can be synthesized by means of applying crossed electric and magnetic fields. The appearance of the gauge potential can be ascribed to the motional (magneto-electric) Stark effect which is responsible for the presence of a linear-in-momentum contribution to the exciton kinetic energy. We study the interplay of this phenomenon with the competing effect which arises from the Rabi-splitting renormalization due the reduction of the electron-hole overlap for a moving exciton. Accounting for this mechanism is crucial in the structures with the high ratio of Rabi splitting and the exciton binding energy. Besides, we propose an approach which boosts the gauge field in the considered system. It takes advantage of the crossover from the hydrogen-like exciton to the strongly dipole-polarized exciton state at a specific choice of electric and magnetic fields. The strong sensitivity of the exciton energy to the momentum in this regime leads to the large values of the gauge field. We consider the specific example of a GaAs ring-shape polariton Berry phase interferometer and show that the flux of the effective magnetic field may approach the flux quantum value in the considered crossover regime.
Control of magnetic domain wall motion by electric fields has recently attracted scientific attention because of its potential for magnetic logic and memory devices. Here, we report on a new driving mechanism that allows for magnetic domain wall motion in an applied electric field without the concurrent use of a magnetic field or spin-polarized electric current. The mechanism is based on elastic coupling between magnetic and ferroelectric domain walls in multiferroic heterostructures. Pure electric-field driven magnetic domain wall motion is demonstrated for epitaxial Fe films on BaTiO$_3$ with in-plane and out-of-plane polarized domains. In this system, magnetic domain wall motion is fully reversible and the velocity of the walls varies exponentially as a function of out-of-plane electric field strength.
We investigate the properties of conduction electrons in single-walled armchair carbon nanotubes in the presence of mutually orthogonal electric and magnetic fields transverse to the tubes axis. We find that the fields give rise to an asymmetric dispersion in the right- and left-moving electrons along the tube as well as a band-dependent interaction. We predict that such a nanotube system would exhibit spin-band-charge separation and a band-dependant tunneling density of states. We show that in the quantum dot limit, the fields serve to completely tune the quantum states of electrons added to the nanotube. For each of the predicted effects, we provide examples and estimates that are relevant to experiment.
Skyrmions and antiskyrmions in magnetic ultrathin films are characterised by a topological charge describing how the spins wind around their core. This topology governs their response to forces in the rigid core limit. However, when internal core excitations are relevant, the dynamics become far richer. We show that current-induced spin-orbit torques can lead to phenomena such as trochoidal motion and skyrmion-antiskyrmion pair generation that only occurs for either the skyrmion or antiskyrmion, depending on the symmetry of the underlying Dzyaloshinskii-Moriya interaction. Such dynamics are induced by core deformations, leading to a time-dependent helicity that governs the motion of the skyrmion and antiskyrmion core. We compute the dynamical phase diagram through a combination of atomistic spin simulations, reduced-variable modelling, and machine learning algorithms. It predicts how spin-orbit torques can control the type of motion and the possibility to generate skyrmion lattices by antiskyrmion seeding.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا