Do you want to publish a course? Click here

Physical Origin of the One-Quarter Exact Exchange in Density Functional Theory

256   0   0.0 ( 0 )
 Added by Marco Bernardi
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Exchange interactions are a manifestation of the quantum mechanical nature of the electrons and play a key role in predicting the properties of materials from first principles. In density functional theory (DFT), a widely used approximation to the exchange energy combines fractions of density-based and Hartree-Fock (exact) exchange. This so-called hybrid DFT scheme is accurate in many materials, for reasons that are not fully understood. Here we show that a 1/4 fraction of exact exchange plus a 3/4 fraction of density-based exchange is compatible with a correct quantum mechanical treatment of the exchange energy of an electron pair in the unpolarized electron gas. We also show that the 1/4 exact-exchange fraction mimics a correlation interaction between doubly-excited electronic configurations. The relation between our results and trends observed in hybrid DFT calculations is discussed, along with other implications.

rate research

Read More

The magnetic properties of the intermetallic compound FeAl are investigated using exact exchange density functional theory. This is implemented within a state of the art all-electron full potential method. We find that FeAl is magnetic with a moment of 0.70 $mu_B$, close to the LSDA result of 0.69 $mu_B$. A comparison with the non-magnetic density of states with experimental negative binding energy result shows a much better agreement than any previous calculations. We attribute this to the fine details of the exchange field, in particular its asymmetry, which is captured very well with the orbital dependent exchange potential.
Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs. This code hosts the development of joint density-functional theory (JDFT) that combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.
A long-standing puzzle in density-functional theory is the issue of the long-range behavior of the Kohn-Sham exchange-correlation potential at metal surfaces. As an important step towards its solution, it is proved here, through a rigurouos asymptotic analysis and accurate numerical solution of the Optimized-Effective-Potential integral equation, that the Kohn-Sham exact exchange potential decays as $ln(z)/z$ far into the vacuum side of an {it extended} semi-infinite jellium. In contrast to the situation in {it localized} systems, like atoms, molecules, and slabs, this dominant contribution does not arise from the so-called Slater potential. This exact-exchange result provides a strong constraint on the suitability of approximate correlation-energy functionals.
A curious behavior of electron correlation energy is explored. Namely, the correlation energy is the energy that tends to drive the system toward that of the uniform electron gas. As such, the energy assumes its maximum value when a gradient of density is zero. As the gradient increases, the energy is diminished by a gradient suppressing factor, designed to attenuate the energy from its maximum value similar to the shape of a bell curve. Based on this behavior, we constructed a very simple mathematical formula that predicted the correlation energy of atoms and molecules. Combined with our proposed exchange energy functional, we calculated the correlation energies, the total energies, and the ionization energies of test atoms and molecules; and despite the unique simplicities, the functionals accuracies are in the top tier performance, competitive to the B3LYP, BLYP, PBE, TPSS, and M11. Therefore, we propose that, as guided by the simplicities and supported by the accuracies, the correlation energy is the energy that locally tends to drive the system toward the uniform electron gas.
In spin-density-functional theory for noncollinear magnetic materials, the Kohn-Sham system features exchange-correlation (xc) scalar potentials and magnetic fields. The significance of the xc magnetic fields is not very well explored; in particular, they can give rise to local torques on the magnetization, which are absent in standard local and semilocal approximations. We obtain exact benchmark solutions for two electrons on four-site extended Hubbard lattices over a wide range of interaction strengths, and compare exact xc potentials and magnetic fields with approximations obtained from orbital-dependent xc functionals. The xc magnetic fields turn out to play an increasingly important role as systems becomes more and more correlated and the electrons begin to localize; the effects of the xc torques, however, remain relatively minor. The approximate xc functionals perform overall quite well, but tend to favor symmetry-broken solutions for strong interactions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا