Do you want to publish a course? Click here

Localized versus extended systems in density-functional theory: some lessons from the Kohn-Sham exact exchange potential

221   0   0.0 ( 0 )
 Added by Claudio Horowitz
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

A long-standing puzzle in density-functional theory is the issue of the long-range behavior of the Kohn-Sham exchange-correlation potential at metal surfaces. As an important step towards its solution, it is proved here, through a rigurouos asymptotic analysis and accurate numerical solution of the Optimized-Effective-Potential integral equation, that the Kohn-Sham exact exchange potential decays as $ln(z)/z$ far into the vacuum side of an {it extended} semi-infinite jellium. In contrast to the situation in {it localized} systems, like atoms, molecules, and slabs, this dominant contribution does not arise from the so-called Slater potential. This exact-exchange result provides a strong constraint on the suitability of approximate correlation-energy functionals.



rate research

Read More

We construct exact Kohn-Sham potentials for the ensemble density-functional theory (EDFT) from the ground and excited states of helium. The exchange-correlation (XC) potential is compared with the quasi-local-density approximation and both single determinant and symmetry eigenstate ghost-corrected exact exchange approximations. Symmetry eigenstate Hartree-exchange recovers distinctive features of the exact XC potential and is used to calculate the correlation potential. Unlike the exact case, excitation energies calculated from these approximations depend on ensemble weight, and it is shown that only the symmetry eigenstate method produces an ensemble derivative discontinuity. Differences in asymptotic and near-ground-state behavior of exact and approximate XC potentials are discussed in the context of producing accurate optical gaps.
The magnetic properties of the intermetallic compound FeAl are investigated using exact exchange density functional theory. This is implemented within a state of the art all-electron full potential method. We find that FeAl is magnetic with a moment of 0.70 $mu_B$, close to the LSDA result of 0.69 $mu_B$. A comparison with the non-magnetic density of states with experimental negative binding energy result shows a much better agreement than any previous calculations. We attribute this to the fine details of the exchange field, in particular its asymmetry, which is captured very well with the orbital dependent exchange potential.
180 - Yayun Hu , G. Murthy , S. Rao 2020
We develop a density functional treatment of non-interacting abelian anyons, which is capable, in principle, of dealing with a system of a large number of anyons in an external potential. Comparison with exact results for few particles shows that the model captures the behavior qualitatively and semi-quantitatively, especially in the vicinity of the fermionic statistics. We then study anyons with statistics parameter $1+1/n$, which are thought to condense into a superconducting state. An indication of the superconducting behavior is the mean-field result that, for uniform density systems, the ground state energy increases under the application of an external magnetic field independent of its direction. Our density-functional-theory based analysis does not find that to be the case for finite systems of anyons, which can accommodate a weak external magnetic field through density transfer between the bulk and the boundary rather than through transitions across effective Landau levels, but the Meissner repulsion of the external magnetic field is recovered in the thermodynamic limit as the effect of the boundary becomes negligible. We also consider the quantum Hall effect of anyons, and show that its topological properties, such as the charge and statistics of the excitations and the quantized Hall conductance, arise in a self-consistent fashion.
We present a numerical modeling workflow based on machine learning (ML) which reproduces the the total energies produced by Kohn-Sham density functional theory (DFT) at finite electronic temperature to within chemical accuracy at negligible computational cost. Based on deep neural networks, our workflow yields the local density of states (LDOS) for a given atomic configuration. From the LDOS, spatially-resolved, energy-resolved, and integrated quantities can be calculated, including the DFT total free energy, which serves as the Born-Oppenheimer potential energy surface for the atoms. We demonstrate the efficacy of this approach for both solid and liquid metals and compare results between independent and unified machine-learning models for solid and liquid aluminum. Our machine-learning density functional theory framework opens up the path towards multiscale materials modeling for matter under ambient and extreme conditions at a computational scale and cost that is unattainable with current algorithms.
345 - Haozhao Liang , Yifei Niu , 2017
Deriving accurate energy density functional is one of the central problems in condensed matter physics, nuclear physics, and quantum chemistry. We propose a novel method to deduce the energy density functional by combining the idea of the functional renormalization group and the Kohn-Sham scheme in density functional theory. The key idea is to solve the renormalization group flow for the effective action decomposed into the mean-field part and the correlation part. Also, we propose a simple practical method to quantify the uncertainty associated with the truncation of the correlation part. By taking the $varphi^4$ theory in zero dimension as a benchmark, we demonstrate that our method shows extremely fast convergence to the exact result even for the highly strong coupling regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا