Do you want to publish a course? Click here

C-GOALS II. Chandra Observations of the Lower Luminosity Sample of Nearby Luminous Infrared Galaxies in GOALS

106   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze Chandra X-ray observatory data for a sample of 63 luminous infrared galaxies (LIRGs), sampling the lower-infrared luminosity range of the Great Observatories All-Sky LIRG survey (GOALS), which includes the most luminous infrared selected galaxies in the local universe. X-rays are detected for 84 individual galaxies within the 63 systems, for which arcsecond resolution X-ray images, fluxes, infrared and X-ray luminosities, spectra and radial profiles are presented. Using X-ray and MIR selection criteria, we find AGN in (31$pm$5)% of the galaxy sample, compared to the (38$pm$6)% previously found for GOALS galaxies with higher infrared luminosities (C-GOALS I). Using mid-infrared data, we find that (59$pm$9)% of the X-ray selected AGN in the full C-GOALS sample do not contribute significantly to the bolometric luminosity of the host galaxy. Dual AGN are detected in two systems, implying a dual AGN fraction in systems that contain at least one AGN of (29$pm$14)%, compared to the (11$pm$10)% found for the C-GOALS I sample. Through analysis of radial profiles, we derive that most sources, and almost all AGN, in the sample are compact, with half of the soft X-ray emission generated within the inner $sim 1$ kpc. For most galaxies, the soft X-ray sizes of the sources are comparable to those of the MIR emission. We also find that the hard X-ray faintness previously reported for the bright C-GOALS I sources is also observed in the brightest LIRGs within the sample, with $L_{rm FIR}>8times10^{10}$ L$_{odot}$.



rate research

Read More

We present X-ray data for a complete sample of 44 luminous infrared galaxies (LIRGs), obtained with the Chandra X-ray Observatory. These are the X-ray observations of the high luminosity portion of the Great Observatory All-sky LIRG Survey (GOALS), which includes the most luminous infrared selected galaxies, log (Lir/Lsun) > 11.73, in the local universe, z < 0.088. X-rays were detected from 43 out of 44 objects, and their arcsec-resolution images, spectra, and radial brightness distributions are presented. With a selection by hard X-ray colour and the 6.4 keV iron line, AGN are found in 37% of the objects, with higher luminosity sources more likely to contain an AGN. These AGN also tend to be found in late-stage mergers. The AGN fraction would increase to 48% if objects with mid-IR [Ne V] detection are included. Double AGN are clearly detected only in NGC 6240 among 24 double/triple systems. Other AGN are found either in single nucleus objects or in one of the double nuclei at similar rates. Objects without conventional X-ray signatures of AGN appear to be hard X-ray quiet, relative to the X-ray to far-IR correlation for starburst galaxies, as discussed elsewhere. Most objects also show extended soft X-ray emission, which is likely related to an outflow from the nuclear region, with a metal abundance pattern suggesting enrichment by core collapse supernovae, as expected for a starburst.
141 - S. Haan , J.A. Surace , L. Armus 2010
We present results of Hubble Space Telescope NICMOS H-band imaging of 73 of most luminous (i.e., log[L_IR/L_0]>11.4) Infrared Galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey (GOALS). This dataset combines multi-wavelength imaging and spectroscopic data from space (Spitzer, HST, GALEX, and Chandra) and ground-based telescopes. In this paper we use the high-resolution near-infrared data to recover nuclear structure that is obscured by dust at optical wavelengths and measure the evolution in this structure along the merger sequence. A large fraction of all galaxies in our sample possess double nuclei (~63%) or show evidence for triple nuclei (~6%). Half of these double nuclei are not visible in the HST B-band images due to dust obscuration. The majority of interacting LIRGs have remaining merger timescales of 0.3 to 1.3 Gyrs, based on the projected nuclear separations and the mass ratio of nuclei. We find that the bulge luminosity surface density increases significantly along the merger sequence (primarily due to a decrease of the bulge radius), while the bulge luminosity shows a small increase towards late merger stages. No significant increase of the bulge Sersic index is found. LIRGs that show no interaction features have on average a significantly larger bulge luminosity, suggesting that non merging LIRGs have larger bulge masses than merging LIRGs. This may be related to the flux limited nature of the sample and the fact that mergers can significantly boost the IR luminosity of otherwise low luminosity galaxies. We find that the projected nuclear separation is significantly smaller for ULIRGs (median value of 1.2 kpc) than for LIRGs (mean value of 6.7 kpc), suggesting that the LIRG phase appears earlier in mergers than the ULIRG phase.
We compare the morphologies of a sample of 20 LIRGs from the Great Observatories All-sky LIRG Survey (GOALS) in the FUV, B, I and H bands, using the Gini (G) and M20 parameters to quantitatively estimate the distribution and concentration of flux as a function of wavelength. HST images provide an average spatial resolution of ~80 pc. While our LIRGs can be reliably classified as mergers across the entire range of wavelengths studied here, there is a clear shift toward more negative M20 (more bulge-dominated) and a less significant decrease in G values at longer wavelengths. We find no correlation between the derived FUV G-M20 parameters and the global measures of the IR to FUV flux ratio, IRX. Given the fine resolution in our HST data, this suggests either that the UV morphology and IRX are correlated on very small scales, or that the regions emitting the bulk of the IR emission emit almost no FUV light. We use our multi-wavelength data to simulate how merging LIRGs would appear from z~0.5-3 in deep optical and near-infrared images such as the HUDF, and use these simulations to measure the G-M20 at these redshifts. Our simulations indicate a noticeable decrease in G, which flattens at z >= 2 by as much as 40%, resulting in mis-classifying our LIRGs as disk-like, even in the rest-frame FUV. The higher redshift values of M20 for the GOALS sources do not appear to change more than about 10% from the values at z~0. The change in G-M20 is caused by the surface brightness dimming of extended tidal features and asymmetries, and also the decreased spatial resolution which reduced the number of individual clumps identified. This effect, seen as early as z~0.5, could easily lead to an underestimate of the number of merging galaxies at high-redshift in the rest-frame FUV.
We present the results of a {it Hubble Space Telescope} ACS/HRC FUV, ACS/WFC optical study into the cluster populations of a sample of 22 Luminous Infrared Galaxies in the Great Observatories All-Sky LIRG Survey. Through integrated broadband photometry we have derived ages and masses for a total of 484 star clusters contained within these systems. This allows us to examine the properties of star clusters found in the extreme environments of LIRGs relative to lower luminosity star-forming galaxies in the local Universe. We find that by adopting a Bruzual & Charlot simple stellar population (SSP) model and Salpeter initial mass function, the age distribution of clusters declines as $dN/dtau = tau^{-0.9 +/- 0.3}$, consistent with the age distribution derived for the Antennae Galaxies, and interpreted as evidence for rapid cluster disruption occuring in the strong tidal fields of merging galaxies. The large number of $10^{6} M_{odot}$ young clusters identified in the sample also suggests that LIRGs are capable of producing more high-mass clusters than what is observed to date in any lower luminosity star-forming galaxy in the local Universe. The observed cluster mass distribution of $dN/dM = M^{-1.95 +/- 0.11}$ is consistent with the canonical -2 power law used to describe the underlying initial cluster mass function (ICMF) for a wide range of galactic environments. We interpret this as evidence against mass-dependent cluster disruption, which would flatten the observed CMF relative to the underlying ICMF distribution.
We present the first results of a high-resolution Karl G. Jansky Very Large Array (VLA) imaging survey of luminous and ultra-luminous infrared galaxies (U/LIRGs) in the Great Observatories All-Sky LIRG Survey (GOALS). From the full sample of 68 galaxies, we have selected 25 LIRGs that show resolved extended emission at sufficient sensitivity to image individual regions of star-formation activity beyond the nucleus.~With wideband radio continuum observations, which sample the frequency range from $3-33$ GHz, we have made extinction-free measurements of the luminosities and spectral indicies for a total of 48 individual star-forming regions identified as having de-projected galactocentric radii ($r_{G}$) that lie outside the 13.2$mu$m core of the galaxy.~The median $3-33$ GHz spectral index and 33 GHz thermal fraction measured for these extranuclear regions is $-0.51 pm 0.13$ and $65 pm 11%$ respectively.~These values are consistent with measurements made on matched spatial scales in normal star-forming galaxies, and suggests that these regions are more heavily-dominated by thermal free-free emission relative to the centers of local ULIRGs.~Further, we find that the median star-formation rate derived for these regions is $sim 1 M_{odot}$ yr$^{-1}$, and when we place them on the sub-galactic star-forming main sequence of galaxies (SFMS), we find they are offset from their host galaxies globally-averaged specific star-formation rates (sSFRs).~We conclude that while nuclear starburst activity drives LIRGs above the SFMS, extranuclear star-formation still proceeds in a more extreme fashion relative to what is seen in local spiral galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا