Do you want to publish a course? Click here

Stability of a stochastically perturbed model of intracellular single-stranded RNA virus replication

129   0   0.0 ( 0 )
 Added by Andrei Korobeinikov
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Replication of single-stranded RNA virus can be complicated, compared to that of double-stranded virus, as it require production of intermediate antigenomic strands that then serve as template for the genomic-sense strands. Moreover, for ssRNA viruses, there is a variability of the molecular mechanism by which genomic strands can be replicated. A combination of such mechanisms can also occur: a fraction of the produced progeny may result from a stamping-machine type of replication that uses the parental genome as template, whereas others may result from the replication of progeny genomes. F. Mart{i}nez et al. and J. Sardany{e}s at al. suggested a deterministic ssRNA virus intracellular replication model that allows for the variability in the replication mechanisms. To explore how stochasticity can affect this model principal properties, in this paper we consider the stability of a stochastically perturbed model of ssRNA virus replication within a cell. Using the direct Lyapunov method, we found sufficient conditions for the stability in probability of equilibrium states for this model. This result confirms that this heterogeneous model of single-stranded RNA virus replication is stable with respect to stochastic perturbations of the environment.



rate research

Read More

The breeding method is a computationally cheap procedure to generate initial conditions for ensemble forecasting which project onto relevant synoptic growing modes. Ensembles of bred vectors, however, often lack diversity and align with the leading Lyapunov vector, which severely impacts their statistical reliability. In previous work we developed stochastically perturbed bred vectors (SPBVs) and random draw bred vectors (RDBVs) in the context of multi-scale systems. Here we explore when this method can be extended to systems without scale separation, and examine the performance of the stochastically modified bred vectors in the single scale Lorenz 96 model. In particular, we show that the performance of SPBVs crucially depends on the degree of localisation of the bred vectors. It is found that, contrary to the case of multi-scale systems, localisation is detrimental for applications of SPBVs in systems without scale-separation when initialised from assimilated data. In the case of weakly localised bred vectors, however, ensembles of SPBVs constitute a reliable ensemble with improved ensemble forecasting skills compared to classical bred vectors, while still preserving the low computational cost of the breeding method. RDBVs are shown to have superior forecast skill and form a reliable ensemble in weakly localised situations, but in situations when they are strongly localised they do not constitute a reliable ensemble and are over-dispersive.
Mathematical modelling has successfully been used to provide quantitative descriptions of many viral infections, but for the Ebola virus, which requires biosafety level 4 facilities for experimentation, modelling can play a crucial role. Ebola modelling efforts have primarily focused on in vivo virus kinetics, e.g., in animal models, to aid the development of antivirals and vaccines. But, thus far, these studies have not yielded a detailed specification of the infection cycle, which could provide a foundational description of the virus kinetics and thus a deeper understanding of their clinical manifestation. Here, we obtain a diverse experimental data set of the Ebola infection in vitro, and then make use of Bayesian inference methods to fully identify parameters in a mathematical model of the infection. Our results provide insights into the distribution of time an infected cell spends in the eclipse phase (the period between infection and the start of virus production), as well as the rate at which infectious virions lose infectivity. We suggest how these results can be used in future models to describe co-infection with defective interfering particles, which are an emerging alternative therapeutic.
We establish the existence of a bifurcation from an attractive random equilibrium to shear-induced chaos for a stochastically driven limit cycle, indicated by a change of sign of the first Lyapunov exponent. This addresses an open problem posed by Kevin Lin and Lai-Sang Young, extending results by Qiudong Wang and Lai-Sang Young on periodically kicked limit cycles to the stochastic context.
A two-dimensional system of differential equations with delay modelling the glucose-insulin interaction processes in the human body is considered. Sufficient conditions are derived for the unique positive equilibrium in the system to be globally asymptotically stable. They are given in terms of the global attractivity of the fixed point in a limiting interval map. The existence of slowly oscillating periodic solutions is shown in the case when the equilibrium is unstable. The mathematical results are supported by extensive numerical simulations. It is shown that typical behaviour in the system is the convergence to either a stable periodic solution or to the unique stable equilibrium. The coexistence of several periodic solutions together with the stable equilibrium is demonstrated as a possibility.
386 - V. Balakrishnan 2001
We present analytical expressions for the time-dependent and stationary probability distributions corresponding to a stochastically perturbed one-dimensional flow with critical points, in two physically relevant situations: delayed evolution, in which the flow alternates with a quiescent state in which the variate remains frozen at its current value for random intervals of time; and interrupted evolution, in which the variate is also re-set in the quiescent state to a random value drawn from a fixed distribution. In the former case, the effect of the delay upon the first passage time statistics is analyzed. In the latter case, the conditions under which an extended stationary distribution can exist as a consequence of the competition between an attractor in the flow and the random re-setting are examined. We elucidate the role of the normalization condition in eliminating the singularities arising from the unstable critical points of the flow, and present a number of representative examples. A simple formula is obtained for the stationary distribution and interpreted physically. A similar interpretation is also given for the known formula for the stationary distribution in a full-fledged dichotomous flow.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا