No Arabic abstract
The type Ia supernova (SN) 2012fr displayed an unusual combination of its Si II {lambda}{lambda}5972, 6355 features. This includes the ratio of their pseudo equivalent widths, placing it at the border of the Shallow Silicon (SS) and Core Normal (CN) spectral subtype in the Branch diagram, while the Si II {lambda}6355 expansion velocities places it as a High-Velocity (HV) object in the Wang et al. spectral type that most interestingly evolves slowly, placing it in the Low Velocity Gradient (LVG) typing of Benetti et al. Only 5% of SNe Ia are HV and located in the SS+CN portion of the Branch diagram and less than 10% of SNe Ia are both HV and LVG. These features point towards SN 2012fr being quite unusual, similar in many ways to the peculiar SN 2000cx. We modeled the spectral evolution of SN 2012fr to see if we could gain some insight into its evolutionary behavior. We use the parameterized radiative transfer code SYNOW to probe the abundance stratification of SN 2012fr at pre-maximum, maximum, and post-maximum light epochs. We also use a grid of W7 models in the radiative transfer code PHOENIX to probe the effect of different density structures on the formation of the Si II {lambda}6355 absorption feature at post-maximum epochs. We find that the unusual features observed in SN 2012fr are likely due to a shell-like density enhancement in the outer ejecta. We comment on possible reasons for atypical Ca II absorption features, and suggest that they are related to the Si II features.
The Schweizer-Middleditch star, located behind the SN 1006 remnant and near its center in projection, provides the opportunity to study cold, expanding ejecta within the SN 1006 shell through UV absorption. Especially notable is an extremely sharp red edge to the Si II 1260 Angstrom feature, which stems from the fastest moving ejecta on the far side of the SN 1006 shell--material that is just encountering the reverse shock. Comparing HST far-UV spectra obtained with COS in 2010 and with STIS in 1999, we have measured the change in this feature over the intervening 10.5-year baseline. We find that the sharp red edge of the Si II feature has shifted blueward by 0.19 +/- 0.05 Angstroms, which means that the material hitting the reverse shock in 2010 was moving slower by 44 +/- 11 km/s than the material that was hitting it in 1999, a change corresponding to - 4.2 +/- 1.0 km/s/yr. This is the first observational confirmation of a long-predicted dynamic effect for a reverse shock: that the shock will work its way inward through expanding supernova ejecta and encounter ever slower material as it proceeds. We also find that the column density of shocked Si II (material that has passed through the reverse shock) has decreased by 7 +/- 2% over the ten-year period. The decrease could indicate that in this direction the reverse shock has been ploughing through a dense clump of Si,leading to pressure and density transients.
We present optical spectra of the nearby Type Ia supernova SN 2011fe at 100, 205, 311, 349, and 578 days post-maximum light, as well as an ultraviolet spectrum obtained with Hubble Space Telescope at 360 days post-maximum light. We compare these observations with synthetic spectra produced with the radiative transfer code PHOENIX. The day +100 spectrum can be well fit with models which neglect collisional and radiative data for forbidden lines. Curiously, including this data and recomputing the fit yields a quite similar spectrum, but with different combinations of lines forming some of the stronger features. At day +205 and later epochs, forbidden lines dominate much of the optical spectrum formation; however, our results indicate that recombination, not collisional excitation, is the most influential physical process driving spectrum formation at these late times. Consequently, our synthetic optical and UV spectra at all epochs presented here are formed almost exclusively through recombination-driven fluorescence. Furthermore, our models suggest that the ultraviolet spectrum even as late as day +360 is optically thick and consists of permitted lines from several iron-peak species. These results indicate that the transition to the nebular phase in Type Ia supernovae is complex and highly wavelength-dependent.
We use observed UV through near IR spectra to examine whether SN 2011fe can be understood in the framework of Branch-normal SNe Ia and to examine its individual peculiarities. As a benchmark, we use a delayed-detonation model with a progenitor metallicity of Z_solar/20. We study the sensitivity of features to variations in progenitor metallicity, the outer density profile, and the distribution of radioactive nickel. The effect of metallicity variations in the progenitor have a relatively small effect on the synthetic spectra. We also find that the abundance stratification of SN 2011fe resembles closely that of a delayed detonation model with a transition density that has been fit to other Branch-normal Type Ia supernovae. At early times, the model photosphere is formed in material with velocities that are too high, indicating that the photosphere recedes too slowly or that SN 2011fe has a lower specific energy in the outer ~0.1 M_sun than does the model. We discuss several explanations for the discrepancies. Finally, we examine variations in both the spectral energy distribution and in the colors due to variations in the progenitor metallicity, which suggests that colors are only weak indicators for the progenitor metallicity, in the particular explosion model that we have studied. We do find that the flux in the U band is significantly higher at maximum light in the solar metallicity model than in the lower metallicity model and the lower metallicity model much better matches the observed spectrum.
We present 65 optical spectra of the Type Ia supernova SN 2012fr, of which 33 were obtained before maximum light. At early times SN 2012fr shows clear evidence of a high-velocity feature (HVF) in the Si II 6355 line which can be cleanly decoupled from the lower velocity photospheric component. This Si II 6355 HVF fades by phase -5; subsequently, the photospheric component exhibits a very narrow velocity width and remains at a nearly constant velocity of v~12,000 km/s until at least 5 weeks after maximum brightness. The Ca II infrared (IR) triplet exhibits similar evidence for both a photospheric component at v~12,000 km/s with narrow line width and long velocity plateau, as well as a high-velocity component beginning at v~31,000 km/s two weeks before maximum. SN 2012fr resides on the border between the shallow silicon and core-normal subclasses in the Branch et al. (2009) classification scheme, and on the border between normal and high-velocity SNe Ia in the Wang et al. (2009a) system. Though it is a clear member of the low velocity gradient (LVG; Benetii et al., 2005) group of SNe Ia and exhibits a very slow light-curve decline, it shows key dissimilarities with the overluminous SN 1991T or SN 1999aa subclasses of SNe Ia. SN 2012fr represents a well-observed SN Ia at the luminous end of the normal SN Ia distribution, and a key transitional event between nominal spectroscopic subclasses of SNe Ia.
Supernova (SN) 2015bh (or SNhunt275) was discovered in NGC 2770 on 2015 February with an absolute magnitude of Mr ~ -13.4 mag, and was initially classified as a SN impostor. Here we present the photometric and spectroscopic evolution of SN 2015bh from discovery to late phases (~ 1 yr after). In addition, we inspect archival images of the host galaxy up to ~ 21 yr before discovery, finding a burst ~ 1 yr before discovery, and further signatures of stellar instability until late 2014. Later on, the luminosity of the transient slowly increases, and a broad light curve peak is reached after about three months. We propose that the transient discovered in early 2015 could be a core-collapse SN explosion. The pre-SN luminosity variability history, the long-lasting rise and faintness first light curve peak suggests that the progenitor was a very massive, unstable and blue star, which exploded as a faint SN because of severe fallback of material. Later on, the object experiences a sudden brightening of 3 mag, which results from the interaction of the SN ejecta with circumstellar material formed through repeated past mass-loss events. Spectroscopic signatures of interaction are however visible at all epochs. A similar chain of events was previously proposed for the similar interacting SN 2009ip.