Do you want to publish a course? Click here

Time Evolution of the Reverse Shock in SN 1006

111   0   0.0 ( 0 )
 Added by P. Frank Winkler
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Schweizer-Middleditch star, located behind the SN 1006 remnant and near its center in projection, provides the opportunity to study cold, expanding ejecta within the SN 1006 shell through UV absorption. Especially notable is an extremely sharp red edge to the Si II 1260 Angstrom feature, which stems from the fastest moving ejecta on the far side of the SN 1006 shell--material that is just encountering the reverse shock. Comparing HST far-UV spectra obtained with COS in 2010 and with STIS in 1999, we have measured the change in this feature over the intervening 10.5-year baseline. We find that the sharp red edge of the Si II feature has shifted blueward by 0.19 +/- 0.05 Angstroms, which means that the material hitting the reverse shock in 2010 was moving slower by 44 +/- 11 km/s than the material that was hitting it in 1999, a change corresponding to - 4.2 +/- 1.0 km/s/yr. This is the first observational confirmation of a long-predicted dynamic effect for a reverse shock: that the shock will work its way inward through expanding supernova ejecta and encounter ever slower material as it proceeds. We also find that the column density of shocked Si II (material that has passed through the reverse shock) has decreased by 7 +/- 2% over the ten-year period. The decrease could indicate that in this direction the reverse shock has been ploughing through a dense clump of Si,leading to pressure and density transients.

rate research

Read More

We report the results of an X-ray proper motion measurement for the NW rim of SN1006, carried out by comparing Chandra observations from 2001 and 2012. The NW limb has predominantly thermal X-ray emission, and it is the only location in SN1006 with significant optical emission: a thin, Balmer-dominated filament. For most of the NW rim, the proper motion is about 0.30 arcsec/yr, essentially the same as has been measured from the H-alpha filament. Isolated regions of the NW limb are dominated by nonthermal emission, and here the proper motion is much higher, 0.49 arcsec/yr, close to the value measured in X-rays along the much brighter NE limb, where the X-rays are overwhelmingly nonthermal. At the 2.2 kpc distance to SN1006, the proper motions imply shock velocities of about 3000 km/s and 5000 km/s in the thermal and nonthermal regions, respectively. A lower velocity behind the H-alpha filament is consistent with the picture that SN1006 is encountering denser gas in the NW, as is also suggested by its overall morphology. In the thermally-dominated portion of the X-ray shell, we also see an offset in the radial profiles at different energies; the 0.5-0.6 keV peak dominated by O VII is closer to the shock front than that of the 0.8-3 keV emission--due to the longer times for heavier elements to reach ionization states where they produce strong X-ray emission.
101 - M. Miceli , F. Acero , G. Dubner 2014
The supernova remnant SN 1006 is a powerful source of high-energy particles and evolves in a relatively tenuous and uniform environment, though interacting with an atomic cloud in its northwestern limb. The X-ray image of SN 1006 reveals an indentation in the southwestern part of the shock front and the HI maps show an isolated cloud (southwestern cloud) having the same velocity as the northwestern cloud and whose morphology fits perfectly in the indentation. We performed spatially resolved spectral analysis of a set of small regions in the southwestern nonthermal limb and studied the deep X-ray spectra obtained within the XMM-Newton SN 1006 Large Program. We also analyzed archive HI data, obtained combining single dish and interferometric observations. We found that the best-fit value of the N_H derived from the X-ray spectra significantly increases in regions corresponding to the southwestern cloud, while the cutoff energy of the synchrotron emission decreases. The amount of the N_H variations corresponds perfectly with the HI column density of the southwestern cloud, as measured from the radio data. The decrease in the cutoff energy at the indentation clearly reveals that the back side of the cloud is actually interacting with the remnant. The southwestern limb therefore presents a unique combination of efficient particle acceleration and high ambient density, thus being the most promising region for gamma-ray hadronic emission in SN 1006. We estimate that such emission will be detectable with the Fermi telescope within a few years.
We present observations with VLT and HST of the broad emission lines from the inner ejecta and reverse shock of SN 1987A from 1999 until 2012 (days 4381 -- 9100 after explosion). We detect broad lines from H-alpha, H-beta, Mg I], Na I, [O I], [Ca II] and a feature at 9220 A. We identify the latter line with Mg II 9218, 9244,most likely pumped by Ly-alpha fluorescence. H-alpha, and H-beta both have a centrally peaked component, extending to 4500 km/s and a very broad component extending to 11,000 km/s, while the other lines have only the central component. The low velocity component comes from unshocked ejecta, heated mainly by X-rays from the circumstellar ring collision, whereas the broad component comes from faster ejecta passing through the reverse shock. The reverse shock flux in H-alpha has increased by a factor of 4-6 from 2000 to 2007. After that there is a tendency of flattening of the light curve, similar to what may be seen in soft X-rays and in the optical lines from the shocked ring. The core component seen in H-alpha, [Ca II] and Mg II has experienced a similar increase, consistent with that found from HST photometry. The ring-like morphology of the ejecta is explained as a result of the X-ray illumination, depositing energy outside of the core of the ejecta. The energy deposition in the ejecta of the external X-rays illumination is calculated using explosion models for SN 1987A and we predict that the outer parts of the unshocked ejecta will continue to brighten because of this. We finally discuss evidence for dust in the ejecta from line asymmetries.
The type Ia supernova (SN) 2012fr displayed an unusual combination of its Si II {lambda}{lambda}5972, 6355 features. This includes the ratio of their pseudo equivalent widths, placing it at the border of the Shallow Silicon (SS) and Core Normal (CN) spectral subtype in the Branch diagram, while the Si II {lambda}6355 expansion velocities places it as a High-Velocity (HV) object in the Wang et al. spectral type that most interestingly evolves slowly, placing it in the Low Velocity Gradient (LVG) typing of Benetti et al. Only 5% of SNe Ia are HV and located in the SS+CN portion of the Branch diagram and less than 10% of SNe Ia are both HV and LVG. These features point towards SN 2012fr being quite unusual, similar in many ways to the peculiar SN 2000cx. We modeled the spectral evolution of SN 2012fr to see if we could gain some insight into its evolutionary behavior. We use the parameterized radiative transfer code SYNOW to probe the abundance stratification of SN 2012fr at pre-maximum, maximum, and post-maximum light epochs. We also use a grid of W7 models in the radiative transfer code PHOENIX to probe the effect of different density structures on the formation of the Si II {lambda}6355 absorption feature at post-maximum epochs. We find that the unusual features observed in SN 2012fr are likely due to a shell-like density enhancement in the outer ejecta. We comment on possible reasons for atypical Ca II absorption features, and suggest that they are related to the Si II features.
Aims: We want to probe the physics of fast collision-less shocks in supernova remnants. In particular, we are interested in the non-equilibration of temperatures and particle acceleration. Specifically, we aim to measure the oxygen temperature with regards to the electron temperature. In addition, we search for synchrotron emission in the northwestern thermal rim. Methods: This study is part of a dedicated deep observational project of SN 1006 using XMM-Newton, which provides us with currently the best resolution spectra of the bright northwestern oxygen knot. We aim to use the reflection grating spectrometer to measure the thermal broadening of the O vii line triplet by convolving the emission profile of the remnant with the response matrix. Results: The line broadening was measured to be {sigma}_e = 2.4 pm 0.3 eV, corresponding to an oxygen temperature of 275$^{+72}_{-63}$ keV. From the EPIC spectra we obtain an electron temperature of 1.35 pm 0.10 keV. The difference in temperature between the species provides further evidence of non-equilibration of temperatures in a shock. In addition, we find evidence for a bow shock that emits X-ray synchrotron radiation, which is at odds with the general idea that due to the magnetic field orientation only in the NE and SW region X-ray synchrotron radiation should be emitted. We find an unusual H{alpha} and X-ray synchrotron geometry, in that the H{alpha} emission peaks downstream of the synchrotron emission. This may be an indication for a peculiar H{alpha} shock, in which the density is lower and neutral fraction are higher than in other supernova remnants, resulting in a peak in H{alpha} emission further downstream of the shock.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا