Do you want to publish a course? Click here

Probing hyperbolic polaritons using infrared attenuated total reflectance micro-spectroscopy

144   0   0.0 ( 0 )
 Added by Thomas Folland
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hyperbolic polariton modes are highly appealing for a broad range of applications in nanophotonics, including surfaced enhanced sensing, sub-diffractional imaging and reconfigurable metasurfaces. Here we show that attenuated total reflectance micro-spectroscopy (ATR) using standard spectroscopic tools can launch hyperbolic polaritons in a Kretschmann-Raether configuration. We measure multiple hyperbolic and dielectric modes within the naturally hyperbolic material hexagonal boron nitride as a function of different isotopic enrichments and flake thickness. This overcomes the technical challenges of measurement approaches based on nanostructuring, or scattering scanning nearfield optical microscopy. Ultimately, our ATR approach allows us to compare the optical properties of small-scale materials prepared by different techniques systematically



rate research

Read More

In the present work we theoretically investigated the excitation of surface plasmon-polaritons (SPPs) in deformed graphene by attenuated total reflection method. We considered the Otto geometry for SPPs excitation in graphene. Efficiency of SPPs excitation strongly depends on the SPPs propagation direction. The frequency and the incident angle of the most effective excitation of SPPs strongly depend on the polarization of the incident light. Our results may open up the new possibilities for strain-induced molding flow of light at nanoscales.
Metasurfaces offer the potential to control light propagation at the nanoscale for applications in both free-space and surface-confined geometries. Existing metasurfaces frequently utilize metallic polaritonic elements with high absorption losses, and/or fixed geometrical designs that serve a single function. Here we overcome these limitations by demonstrating a reconfigurable hyperbolic metasurface comprising of a heterostructure of isotopically enriched hexagonal boron nitride (hBN) in direct contact with the phase-change material (PCM) vanadium dioxide (VO2). Spatially localized metallic and dielectric domains in VO2 change the wavelength of the hyperbolic phonon polaritons (HPhPs) supported in hBN by a factor 1.6 at 1450cm-1. This induces in-plane launching, refraction and reflection of HPhPs in the hBN, proving reconfigurable control of in-plane HPhP propagation at the nanoscale15. These results exemplify a generalizable framework based on combining hyperbolic media and PCMs in order to design optical functionalities such as resonant cavities, beam steering, waveguiding and focusing with nanometric control.
Phonon polaritons (PhPs), the collective phonon oscillations with hybridized electromagnetic fields, concentrate optical fields in the mid-infrared frequency range that matches the vibrational modes of molecules. The utilization of PhPs holds the promise for chemical sensing tools and polariton-enhanced nanospectroscopy. However, investigations and innovations on PhPs in the aqueous phase remains stagnant, because of the lack of in situ mid-infrared nano-imaging methods in water. Strong infrared absorption from water prohibits optical delivery and detection in the mid-infrared for scattering-type near-field microscopy. Here, we present our solution: the detection of photothermal responses caused by the excitation of PhPs by liquid phase peak force infrared (LiPFIR) microscopy. Characteristic interference fringes of PhPs in 10B isotope-enriched h-BN were measured in the aqueous phase and their dispersion relationship extracted. LiPFIR enables the measurement of mid-infrared PhPs in the fluid phase, opening possibilities, and facilitating the development of mid-IR phonon polaritonics in water.
Optical spectroscopy techniques such as differential reflectance and transmittance have proven to be very powerful techniques to study 2D materials. However, a thorough description of the experimental setups needed to carry out these measurements is lacking in the literature. We describe a versatile optical microscope setup to carry out differential reflectance and transmittance spectroscopy in 2D materials with a lateral resolution of ~1 micron in the visible and near-infrared part of the spectrum. We demonstrate the potential of the presented setup to determine the number of layers of 2D materials and to characterize their fundamental optical properties such as excitonic resonances. We illustrate its performance by studying mechanically exfoliated and chemical vapor-deposited transition metal dichalcogenide samples.
Recently, in-plane biaxial hyperbolicity has been observed in $alpha$-MoO${_3}$ --a van der Waal crystal-- in the mid-infrared frequency regime. Here, we present a comprehensive theoretical analysis of thin film $alpha$-MoO${_3}$ for application to two mid-IR photonic devices -- a polarizer and a waveplate. We show the possibility of a significant reduction in the device footprint while maintaining an enormous extinction ratio from $alpha$-MoO${_3}$ based polarizers in comparison with that of conventional polarizers. Secondly, we carry out device optimization of $alpha$-MoO${_3}$ based waveplates with subwavelength thickness. We explain our results using natural in-plane hyperbolicity of $alpha$-MoO${_3}$ via analytical and full wave simulations. This work will build a foundation for miniaturization of mid-infrared photonic devices by exploiting the optical anisotropy of $alpha$-MoO${_3}$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا