Do you want to publish a course? Click here

Density response and collective modes of semi-holographic non-Fermi liquids

82   0   0.0 ( 0 )
 Added by Giuseppe Policastro
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Semi-holographic models of non-Fermi liquids have been shown to have generically stable generalised quasi-particles on the Fermi surface. Although these excitations are broad and exhibit particle-hole asymmetry, they were argued to be stable from interactions at the Fermi surface. In this work, we use this observation to compute the density response and collective behaviour in these systems. Compared to the Fermi liquid case, we find that the boundaries of the particle-hole continuum are blurred by incoherent contributions. However, there is a region inside this continuum, that we call inner core, within which salient features of the Fermi liquid case are preserved. A particularly striking prediction of our work is that these systems support a plasmonic collective excitation which is well-defined at large momenta, has an approximately linear dispersion relation and is located in the low-energy tail of the particle-hole continuum. Furthermore, the dynamic screening potential shows deep attractive regions as a function of the distance at higher frequencies which might lead to long-lived pair formation depending on the behaviour of the pair susceptibility. We also find that Friedel oscillations are present in these systems but are highly suppressed.



rate research

Read More

In this paper, we study a holographic dual of a confined fermi liquid state by putting a charged fluid of fermions in the AdS soliton geometry. This can be regarded as a confined analogue of electron stars. Depending on the parameters such as the mass and charge of the bulk fermion field, we found three different phase structures when we change the values of total charge density at zero temperature. In one of the three cases, our confined solution (called soliton star) is always stable and this solution approaches to the electron star away from the tip. In both the second and third case, we find a confinement/deconfinement phase transition. Moreover, in the third one, there is a strong indication that the soliton star decays into an inhomogeneous solution. We also analyze the probe fermion equations (in the WKB approximation) in the background of this soliton star geometry to confirm the presence of many fermi-surfaces in the system.
We construct a semi-holographic effective theory in which the electron of a two-dimensional band hybridizes with a fermionic operator of a critical holographic sector, while also interacting with other bands that preserve quasiparticle characteristics. Besides the scaling dimension $ u$ of the fermionic operator in the holographic sector, the effective theory has two {dimensionless} couplings $alpha$ and $gamma$ determining the holographic and Fermi-liquid-type contributions to the self-energy respectively. We find that irrespective of the choice of the holographic critical sector, there exists a ratio of the effective couplings for which we obtain linear-in-T resistivity for a wide range of temperatures. This scaling persists to arbitrarily low temperatures when $ u$ approaches unity in which limit we obtain a marginal Fermi liquid with a specific temperature dependence of the self-energy.
The shear viscosity is an important characterization of how a many-body system behaves like a fluid. We study the shear viscosity in a strongly interacting solvable model, consisting of coupled Sachdev-Ye-Kitaev (SYK) islands. As temperature is lowered, the model exhibits a crossover from an incoherent metal with local criticality to a marginal fermi liquid. We find that while the ratio of shear viscosity to entropy density in the marginal Fermi liquid regime satisfies a Kovtun-Son-Starinets (KSS) like bound, it can strongly violate the KSS bound in a robust temperature range of the incoherent metal regime, implying a nearly perfect fluidity of the coupled local critical SYK model. Furthermore, this model also provides the first translationally invariant example violating the KSS bound with known gauge-gravity correspondence.
We use holography to study the ground state of a system with interacting bosonic and fermionic degrees of freedom at finite density. The gravitational model consists of Einstein-Maxwell gravity coupled to a perfect fluid of charged fermions and to a charged scalar field which interact through a current-current interaction. When the scalar field is non-trivial, in addition to compact electron stars, the screening of the fermion electric charge by the scalar condensate allows the formation of solutions where the fermion fluid is made of antiparticles, as well as solutions with coexisting, separated regions of particle-like and antiparticle-like fermion fluids. We show that, when the latter solutions exist, they are thermodynamically favored. By computing the two-point Green function of the boundary fermionic operator we show that, in addition to the charged scalar condensate, the dual field theory state exhibits electron-like and/or hole-like Fermi surfaces. Compared to fluid-only solutions, the presence of the scalar condensate destroys the Fermi surfaces with lowest Fermi momenta. We interpret this as a signal of the onset of superconductivity.
The holographic Weyl semimetal is a model of a strongly coupled topological semi-metal. A topological quantum phase transition separates a topological phase with non-vanishing anomalous Hall conductivity from a trivial state. We investigate how this phase transition depends on the parameters of the scalar potential (mass and quartic self coupling) finding that the quantum phase transition persists for a large region in parameter space. We then compute the axial Hall conductivity. The algebraic structure of the axial anomaly predicts it to be 1/3 of the electric Hall conductivity. We find that this holds once a non-trivial renormalization effect on the external axial gauge fields is taken into account. Finally we show that the phase transition also occurs in a top-down model based on a consistent truncation of type IIB supergravity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا