Do you want to publish a course? Click here

Deep, Skinny Neural Networks are not Universal Approximators

202   0   0.0 ( 0 )
 Added by Jesse Johnson
 Publication date 2018
and research's language is English
 Authors Jesse Johnson




Ask ChatGPT about the research

In order to choose a neural network architecture that will be effective for a particular modeling problem, one must understand the limitations imposed by each of the potential options. These limitations are typically described in terms of information theoretic bounds, or by comparing the relative complexity needed to approximate example functions between different architectures. In this paper, we examine the topological constraints that the architecture of a neural network imposes on the level sets of all the functions that it is able to approximate. This approach is novel for both the nature of the limitations and the fact that they are independent of network depth for a broad family of activation functions.



rate research

Read More

Compared with avid research activities of deep convolutional neural networks (DCNNs) in practice, the study of theoretical behaviors of DCNNs lags heavily behind. In particular, the universal consistency of DCNNs remains open. In this paper, we prove that implementing empirical risk minimization on DCNNs with expansive convolution (with zero-padding) is strongly universally consistent. Motivated by the universal consistency, we conduct a series of experiments to show that without any fully connected layers, DCNNs with expansive convolution perform not worse than the widely used deep neural networks with hybrid structure containing contracting (without zero-padding) convolution layers and several fully connected layers.
Deep neural networks are widely used for nonlinear function approximation with applications ranging from computer vision to control. Although these networks involve the composition of simple arithmetic operations, it can be very challenging to verify whether a particular network satisfies certain input-output properties. This article surveys methods that have emerged recently for soundly verifying such properties. These methods borrow insights from reachability analysis, optimization, and search. We discuss fundamental differences and connections between existing algorithms. In addition, we provide pedagogical implementations of existing methods and compare them on a set of benchmark problems.
The evolution of a deep neural network trained by the gradient descent can be described by its neural tangent kernel (NTK) as introduced in [20], where it was proven that in the infinite width limit the NTK converges to an explicit limiting kernel and it stays constant during training. The NTK was also implicit in some other recent papers [6,13,14]. In the overparametrization regime, a fully-trained deep neural network is indeed equivalent to the kernel regression predictor using the limiting NTK. And the gradient descent achieves zero training loss for a deep overparameterized neural network. However, it was observed in [5] that there is a performance gap between the kernel regression using the limiting NTK and the deep neural networks. This performance gap is likely to originate from the change of the NTK along training due to the finite width effect. The change of the NTK along the training is central to describe the generalization features of deep neural networks. In the current paper, we study the dynamic of the NTK for finite width deep fully-connected neural networks. We derive an infinite hierarchy of ordinary differential equations, the neural tangent hierarchy (NTH) which captures the gradient descent dynamic of the deep neural network. Moreover, under certain conditions on the neural network width and the data set dimension, we prove that the truncated hierarchy of NTH approximates the dynamic of the NTK up to arbitrary precision. This description makes it possible to directly study the change of the NTK for deep neural networks, and sheds light on the observation that deep neural networks outperform kernel regressions using the corresponding limiting NTK.
Deep neural networks such as AlphaFold and RoseTTAFold predict remarkably accurate structures of proteins compared to other algorithmic approaches. It is known that biologically small perturbations in the protein sequence do not lead to drastic changes in the protein structure. In this paper, we demonstrate that RoseTTAFold does not exhibit such a robustness despite its high accuracy, and biologically small perturbations for some input sequences result in radically different predicted protein structures. This raises the challenge of detecting when these predicted protein structures cannot be trusted. We define the robustness measure for the predicted structure of a protein sequence to be the inverse of the root-mean-square distance (RMSD) in the predicted structure and the structure of its adversarially perturbed sequence. We use adversarial attack methods to create adversarial protein sequences, and show that the RMSD in the predicted protein structure ranges from 0.119r{A} to 34.162r{A} when the adversarial perturbations are bounded by 20 units in the BLOSUM62 distance. This demonstrates very high variance in the robustness measure of the predicted structures. We show that the magnitude of the correlation (0.917) between our robustness measure and the RMSD between the predicted structure and the ground truth is high, that is, the predictions with low robustness measure cannot be trusted. This is the first paper demonstrating the susceptibility of RoseTTAFold to adversarial attacks.
Despite the functional success of deep neural networks (DNNs), their trustworthiness remains a crucial open challenge. To address this challenge, both testing and verification techniques have been proposed. But these existing techniques provide either scalability to large networks or formal guarantees, not both. In this paper, we propose a scalable quantitative verification framework for deep neural networks, i.e., a test-driven approach that comes with formal guarantees that a desired probabilistic property is satisfied. Our technique performs enough tests until soundness of a formal probabilistic property can be proven. It can be used to certify properties of both deterministic and randomized DNNs. We implement our approach in a tool called PROVERO and apply it in the context of certifying adversarial robustness of DNNs. In this context, we first show a new attack-agnostic measure of robustness which offers an alternative to purely attack-based methodology of evaluating robustness being reported today. Second, PROVERO provides certificates of robustness for large DNNs, where existing state-of-the-art verification tools fail to produce conclusive results. Our work paves the way forward for verifying properties of distributions captured by real-world deep neural networks, with provable guarantees, even where testers only have black-box access to the neural network.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا