This work develops asymptotic properties of a class of switching jump diffusion processes. The processes under consideration may be viewed as a number of jump diffusion processes modulated by a random switching mechanism. The underlying processes feature in the switching process depends on the jump diffusions. In this paper, conditions for recurrence and positive recurrence are derived. Ergodicity is examined in detail. Existence of invariant probability measures is proved.
This work is devoted to almost sure and moment exponential stability of regime-switching jump diffusions. The Lyapunov function method is used to derive sufficient conditions for stabilities for general nonlinear systems; which further helps to derive easily verifiable conditions for linear systems. For one-dimensional linear regime-switching jump diffusions, necessary and sufficient conditions for almost sure and $p$th moment exponential stabilities are presented. Several examples are provided for illustration.
This work examines a class of switching jump diffusion processes. The main effort is devoted to proving the maximum principle and obtaining the Harnack inequalities. Compared with the diffusions and switching diffusions, the associated operators for switching jump diffusions are non-local, resulting in more difficulty in treating such systems. Our study is carried out by taking into consideration of the interplay of stochastic processes and the associated systems of integro-differential equations.
This work develops an approximation procedure for a class of non-zero-sum stochastic differential investment and reinsurance games between two insurance companies. Both proportional reinsurance and excess-of loss reinsurance policies are considered. We develop numerical algorithms to obtain the Nash equilibrium by adopting the Markov chain approximation methodology and applying the dynamical programming principle for the nonlinear integro-differential Hamilton-Jacobi-Isaacs (HJI) equations. Furthermore, we establish the convergence of the approximation sequences and the approximation to the value functions. Numerical examples are presented to illustrate the applicability of the algorithms.
The mild sufficient conditions for exponential ergodicity of a Markov process, defined as the solution to SDE with a jump noise, are given. These conditions include three principal claims: recurrence condition R, topological irreducibility condition S and non-degeneracy condition N, the latter formulated in the terms of a certain random subspace of Re^m, associated with the initial equation. The examples are given, showing that, in general, none of three principal claims can be removed without losing ergodicity of the process. The key point in the approach, developed in the paper, is that the local Doeblin condition can be derived from N and S via the stratification method and criterium for the convergence in variations of the family of induced measures on Re^m.
In this paper we use splitting technique to estimate the probability of hitting a rare but critical set by the continuous component of a switching diffusion. Instead of following classical approach we use Wonham filter to achieve multiple goals including reduction of asymptotic variance and exemption from sampling the discrete components.