This work is devoted to almost sure and moment exponential stability of regime-switching jump diffusions. The Lyapunov function method is used to derive sufficient conditions for stabilities for general nonlinear systems; which further helps to derive easily verifiable conditions for linear systems. For one-dimensional linear regime-switching jump diffusions, necessary and sufficient conditions for almost sure and $p$th moment exponential stabilities are presented. Several examples are provided for illustration.
This work develops asymptotic properties of a class of switching jump diffusion processes. The processes under consideration may be viewed as a number of jump diffusion processes modulated by a random switching mechanism. The underlying processes feature in the switching process depends on the jump diffusions. In this paper, conditions for recurrence and positive recurrence are derived. Ergodicity is examined in detail. Existence of invariant probability measures is proved.
This work examines a class of switching jump diffusion processes. The main effort is devoted to proving the maximum principle and obtaining the Harnack inequalities. Compared with the diffusions and switching diffusions, the associated operators for switching jump diffusions are non-local, resulting in more difficulty in treating such systems. Our study is carried out by taking into consideration of the interplay of stochastic processes and the associated systems of integro-differential equations.
Affine jump-diffusions constitute a large class of continuous-time stochastic models that are particularly popular in finance and economics due to their analytical tractability. Methods for parameter estimation for such processes require ergodicity in order establish consistency and asymptotic normality of the associated estimators. In this paper, we develop stochastic stability conditions for affine jump-diffusions, thereby providing the needed large-sample theoretical support for estimating such processes. We establish ergodicity for such models by imposing a `strong mean reversion condition and a mild condition on the distribution of the jumps, i.e. the finiteness of a logarithmic moment. Exponential ergodicity holds if the jumps have a finite moment of a positive order. In addition, we prove strong laws of large numbers and functional central limit theorems for additive functionals for this class of models.
We study the generalized random Fibonacci sequences defined by their first nonnegative terms and for $nge 1$, $F_{n+2} = lambda F_{n+1} pm F_{n}$ (linear case) and $widetilde F_{n+2} = |lambda widetilde F_{n+1} pm widetilde F_{n}|$ (non-linear case), where each $pm$ sign is independent and either $+$ with probability $p$ or $-$ with probability $1-p$ ($0<ple 1$). Our main result is that, when $lambda$ is of the form $lambda_k = 2cos (pi/k)$ for some integer $kge 3$, the exponential growth of $F_n$ for $0<ple 1$, and of $widetilde F_{n}$ for $1/k < ple 1$, is almost surely positive and given by $$ int_0^infty log x d u_{k, rho} (x), $$ where $rho$ is an explicit function of $p$ depending on the case we consider, taking values in $[0, 1]$, and $ u_{k, rho}$ is an explicit probability distribution on $RR_+$ defined inductively on generalized Stern-Brocot intervals. We also provide an integral formula for $0<ple 1$ in the easier case $lambdage 2$. Finally, we study the variations of the exponent as a function of $p$.
In this paper we use splitting technique to estimate the probability of hitting a rare but critical set by the continuous component of a switching diffusion. Instead of following classical approach we use Wonham filter to achieve multiple goals including reduction of asymptotic variance and exemption from sampling the discrete components.