Do you want to publish a course? Click here

Interpreting Adversarial Robustness: A View from Decision Surface in Input Space

102   0   0.0 ( 0 )
 Added by Fuxun Yu
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

One popular hypothesis of neural network generalization is that the flat local minima of loss surface in parameter space leads to good generalization. However, we demonstrate that loss surface in parameter space has no obvious relationship with generalization, especially under adversarial settings. Through visualizing decision surfaces in both parameter space and input space, we instead show that the geometry property of decision surface in input space correlates well with the adversarial robustness. We then propose an adversarial robustness indicator, which can evaluate a neural networks intrinsic robustness property without testing its accuracy under adversarial attacks. Guided by it, we further propose our robust training method. Without involving adversarial training, our method could enhance networks intrinsic adversarial robustness against various adversarial attacks.



rate research

Read More

102 - Hao Zhang , Sen Li , Yinchao Ma 2020
This paper aims to understand and improve the utility of the dropout operation from the perspective of game-theoretic interactions. We prove that dropout can suppress the strength of interactions between input variables of deep neural networks (DNNs). The theoretic proof is also verified by various experiments. Furthermore, we find that such interactions were strongly related to the over-fitting problem in deep learning. Thus, the utility of dropout can be regarded as decreasing interactions to alleviate the significance of over-fitting. Based on this understanding, we propose an interaction loss to further improve the utility of dropout. Experimental results have shown that the interaction loss can effectively improve the utility of dropout and boost the performance of DNNs.
102 - Guillaume Vidot 2021
We propose the first general PAC-Bayesian generalization bounds for adversarial robustness, that estimate, at test time, how much a model will be invariant to imperceptible perturbations in the input. Instead of deriving a worst-case analysis of the risk of a hypothesis over all the possible perturbations, we leverage the PAC-Bayesian framework to bound the averaged risk on the perturbations for majority votes (over the whole class of hypotheses). Our theoretically founded analysis has the advantage to provide general bounds (i) independent from the type of perturbations (i.e., the adversarial attacks), (ii) that are tight thanks to the PAC-Bayesian framework, (iii) that can be directly minimized during the learning phase to obtain a robust model on different attacks at test time.
Robust optimization has been widely used in nowadays data science, especially in adversarial training. However, little research has been done to quantify how robust optimization changes the optimizers and the prediction losses comparing to standard training. In this paper, inspired by the influence function in robust statistics, we introduce the Adversarial Influence Function (AIF) as a tool to investigate the solution produced by robust optimization. The proposed AIF enjoys a closed-form and can be calculated efficiently. To illustrate the usage of AIF, we apply it to study model sensitivity -- a quantity defined to capture the change of prediction losses on the natural data after implementing robust optimization. We use AIF to analyze how model complexity and randomized smoothing affect the model sensitivity with respect to specific models. We further derive AIF for kernel regressions, with a particular application to neural tangent kernels, and experimentally demonstrate the effectiveness of the proposed AIF. Lastly, the theories of AIF will be extended to distributional robust optimization.
This short note highlights some links between two lines of research within the emerging topic of trustworthy machine learning: differential privacy and robustness to adversarial examples. By abstracting the definitions of both notions, we show that they build upon the same theoretical ground and hence results obtained so far in one domain can be transferred to the other. More precisely, our analysis is based on two key elements: probabilistic mappings (also called randomized algorithms in the differential privacy community), and the Renyi divergence which subsumes a large family of divergences. We first generalize the definition of robustness against adversarial examples to encompass probabilistic mappings. Then we observe that Renyi-differential privacy (a generalization of differential privacy recently proposed in~cite{Mironov2017RenyiDP}) and our definition of robustness share several similarities. We finally discuss how can both communities benefit from this connection to transfer technical tools from one research field to the other.
Recently, adversarial deception becomes one of the most considerable threats to deep neural networks. However, compared to extensive research in new designs of various adversarial attacks and defenses, the neural networks intrinsic robustness property is still lack of thorough investigation. This work aims to qualitatively interpret the adversarial attack and defense mechanism through loss visualization, and establish a quantitative metric to evaluate the neural network models intrinsic robustness. The proposed robustness metric identifies the upper bound of a models prediction divergence in the given domain and thus indicates whether the model can maintain a stable prediction. With extensive experiments, our metric demonstrates several advantages over conventional adversarial testing accuracy based robustness estimation: (1) it provides a uniformed evaluation to models with different structures and parameter scales; (2) it over-performs conventional accuracy based robustness estimation and provides a more reliable evaluation that is invariant to different test settings; (3) it can be fast generated without considerable testing cost.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا