No Arabic abstract
In this paper, we study counterfactual fairness in text classification, which asks the question: How would the prediction change if the sensitive attribute referenced in the example were different? Toxicity classifiers demonstrate a counterfactual fairness issue by predicting that Some people are gay is toxic while Some people are straight is nontoxic. We offer a metric, counterfactual token fairness (CTF), for measuring this particular form of fairness in text classifiers, and describe its relationship with group fairness. Further, we offer three approaches, blindness, counterfactual augmentation, and counterfactual logit pairing (CLP), for optimizing counterfactual token fairness during training, bridging the robustness and fairness literature. Empirically, we find that blindness and CLP address counterfactual token fairness. The methods do not harm classifier performance, and have varying tradeoffs with group fairness. These approaches, both for measurement and optimization, provide a new path forward for addressing fairness concerns in text classification.
Robustness is of central importance in machine learning and has given rise to the fields of domain generalization and invariant learning, which are concerned with improving performance on a test distribution distinct from but related to the training distribution. In light of recent work suggesting an intimate connection between fairness and robustness, we investigate whether algorithms from robust ML can be used to improve the fairness of classifiers that are trained on biased data and tested on unbiased data. We apply Invariant Risk Minimization (IRM), a domain generalization algorithm that employs a causal discovery inspired method to find robust predictors, to the task of fairly predicting the toxicity of internet comments. We show that IRM achieves better out-of-distribution accuracy and fairness than Empirical Risk Minimization (ERM) methods, and analyze both the difficulties that arise when applying IRM in practice and the conditions under which IRM will likely be effective in this scenario. We hope that this work will inspire further studies of how robust machine learning methods relate to algorithmic fairness.
Much of the previous machine learning (ML) fairness literature assumes that protected features such as race and sex are present in the dataset, and relies upon them to mitigate fairness concerns. However, in practice factors like privacy and regulation often preclude the collection of protected features, or their use for training or inference, severely limiting the applicability of traditional fairness research. Therefore we ask: How can we train an ML model to improve fairness when we do not even know the protected group memberships? In this work we address this problem by proposing Adversarially Reweighted Learning (ARL). In particular, we hypothesize that non-protected features and task labels are valuable for identifying fairness issues, and can be used to co-train an adversarial reweighting approach for improving fairness. Our results show that {ARL} improves Rawlsian Max-Min fairness, with notable AUC improvements for worst-case protected groups in multiple datasets, outperforming state-of-the-art alternatives.
Recent works have empirically shown that there exist adversarial examples that can be hidden from neural network interpretability (namely, making network interpretation maps visually similar), or interpretability is itself susceptible to adversarial attacks. In this paper, we theoretically show that with a proper measurement of interpretation, it is actually difficult to prevent prediction-evasion adversarial attacks from causing interpretation discrepancy, as confirmed by experiments on MNIST, CIFAR-10 and Restricted ImageNet. Spurred by that, we develop an interpretability-aware defensive scheme built only on promoting robust interpretation (without the need for resorting to adversarial loss minimization). We show that our defense achieves both robust classification and robust interpretation, outperforming state-of-the-art adversarial training methods against attacks of large perturbation in particular.
Recent research has recognized interpretability and robustness as essential properties of trustworthy classification. Curiously, a connection between robustness and interpretability was empirically observed, but the theoretical reasoning behind it remained elusive. In this paper, we rigorously investigate this connection. Specifically, we focus on interpretation using decision trees and robustness to $l_{infty}$-perturbation. Previous works defined the notion of $r$-separation as a sufficient condition for robustness. We prove upper and lower bounds on the tree size in case the data is $r$-separated. We then show that a tighter bound on the size is possible when the data is linearly separated. We provide the first algorithm with provable guarantees both on robustness, interpretability, and accuracy in the context of decision trees. Experiments confirm that our algorithm yields classifiers that are both interpretable and robust and have high accuracy. The code for the experiments is available at https://github.com/yangarbiter/interpretable-robust-trees .
Federated learning (FL) is an emerging practical framework for effective and scalable machine learning among multiple participants, such as end users, organizations and companies. However, most existing FL or distributed learning frameworks have not well addressed two important issues together: collaborative fairness and adversarial robustness (e.g. free-riders and malicious participants). In conventional FL, all participants receive the global model (equal rewards), which might be unfair to the high-contributing participants. Furthermore, due to the lack of a safeguard mechanism, free-riders or malicious adversaries could game the system to access the global model for free or to sabotage it. In this paper, we propose a novel Robust and Fair Federated Learning (RFFL) framework to achieve collaborative fairness and adversarial robustness simultaneously via a reputation mechanism. RFFL maintains a reputation for each participant by examining their contributions via their uploaded gradients (using vector similarity) and thus identifies non-contributing or malicious participants to be removed. Our approach differentiates itself by not requiring any auxiliary/validation dataset. Extensive experiments on benchmark datasets show that RFFL can achieve high fairness and is very robust to different types of adversaries while achieving competitive predictive accuracy.