Do you want to publish a course? Click here

Deformable Object Tracking with Gated Fusion

96   0   0.0 ( 0 )
 Added by Wenxi Liu
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The tracking-by-detection framework receives growing attentions through the integration with the Convolutional Neural Networks (CNNs). Existing tracking-by-detection based methods, however, fail to track objects with severe appearance variations. This is because the traditional convolutional operation is performed on fixed grids, and thus may not be able to find the correct response while the object is changing pose or under varying environmental conditions. In this paper, we propose a deformable convolution layer to enrich the target appearance representations in the tracking-by-detection framework. We aim to capture the target appearance variations via deformable convolution, which adaptively enhances its original features. In addition, we also propose a gated fusion scheme to control how the variations captured by the deformable convolution affect the original appearance. The enriched feature representation through deformable convolution facilitates the discrimination of the CNN classifier on the target object and background. Extensive experiments on the standard benchmarks show that the proposed tracker performs favorably against state-of-the-art methods.



rate research

Read More

Siamese-based trackers have achieved excellent performance on visual object tracking. However, the target template is not updated online, and the features of the target template and search image are computed independently in a Siamese architecture. In this paper, we propose Deformable Siamese Attention Networks, referred to as SiamAttn, by introducing a new Siamese attention mechanism that computes deformable self-attention and cross-attention. The self attention learns strong context information via spatial attention, and selectively emphasizes interdependent channel-wise features with channel attention. The cross-attention is capable of aggregating rich contextual inter-dependencies between the target template and the search image, providing an implicit manner to adaptively update the target template. In addition, we design a region refinement module that computes depth-wise cross correlations between the attentional features for more accurate tracking. We conduct experiments on six benchmarks, where our method achieves new state of-the-art results, outperforming the strong baseline, SiamRPN++ [24], by 0.464->0.537 and 0.415->0.470 EAO on VOT 2016 and 2018. Our code is available at: https://github.com/msight-tech/research-siamattn.
126 - Kemiao Huang , Qi Hao 2021
Multi-object tracking (MOT) with camera-LiDAR fusion demands accurate results of object detection, affinity computation and data association in real time. This paper presents an efficient multi-modal MOT framework with online joint detection and tracking schemes and robust data association for autonomous driving applications. The novelty of this work includes: (1) development of an end-to-end deep neural network for joint object detection and correlation using 2D and 3D measurements; (2) development of a robust affinity computation module to compute occlusion-aware appearance and motion affinities in 3D space; (3) development of a comprehensive data association module for joint optimization among detection confidences, affinities and start-end probabilities. The experiment results on the KITTI tracking benchmark demonstrate the superior performance of the proposed method in terms of both tracking accuracy and processing speed.
Deformable Monocular SLAM algorithms recover the localization of a camera in an unknown deformable environment. Current approaches use a template-based deformable tracking to recover the camera pose and the deformation of the map. These template-based methods use an underlying global deformation model. In this paper, we introduce a novel deformable camera tracking method with a local deformation model for each point. Each map point is defined as a single textured surfel that moves independently of the other map points. Thanks to a direct photometric error cost function, we can track the position and orientation of the surfel without an explicit global deformation model. In our experiments, we validate the proposed system and observe that our local deformation model estimates more accurately and robustly the targeted deformations of the map in both laboratory-controlled experiments and in-body scenarios undergoing non-isometric deformations, with changing topology or discontinuities.
Capsule networks promise significant benefits over convolutional networks by storing stronger internal representations, and routing information based on the agreement between intermediate representations projections. Despite this, their success has been mostly limited to small-scale classification datasets due to their computationally expensive nature. Recent studies have partially overcome this burden by locally-constraining the dynamic routing of features with convolutional capsules. Though memory efficient, convolutional capsules impose geometric constraints which fundamentally limit the ability of capsules to model the pose/deformation of objects. Further, they do not address the bigger memory concern of class-capsules scaling-up to bigger tasks such as detection or large-scale classification. In this study, we introduce deformable capsules (DeformCaps), a new capsule structure (SplitCaps), and a novel dynamic routing algorithm (SE-Routing) to balance computational efficiency with the need for modeling a large number of objects and classes. We demonstrate that the proposed methods allow capsules to efficiently scale-up to large-scale computer vision tasks for the first time, and create the first-ever capsule network for object detection in the literature. Our proposed architecture is a one-stage detection framework and obtains results on MS COCO which are on-par with state-of-the-art one-stage CNN-based methods, while producing fewer false positive detections.
286 - Peize Sun , Jinkun Cao , Yi Jiang 2020
In this work, we propose TransTrack, a simple but efficient scheme to solve the multiple object tracking problems. TransTrack leverages the transformer architecture, which is an attention-based query-key mechanism. It applies object features from the previous frame as a query of the current frame and introduces a set of learned object queries to enable detecting new-coming objects. It builds up a novel joint-detection-and-tracking paradigm by accomplishing object detection and object association in a single shot, simplifying complicated multi-step settings in tracking-by-detection methods. On MOT17 and MOT20 benchmark, TransTrack achieves 74.5% and 64.5% MOTA, respectively, competitive to the state-of-the-art methods. We expect TransTrack to provide a novel perspective for multiple object tracking. The code is available at: url{https://github.com/PeizeSun/TransTrack}.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا