Do you want to publish a course? Click here

Manifestation of important role of nuclear forces in emission of photons in scattering of pions off nuclei

97   0   0.0 ( 0 )
 Added by Sergei Maydanyuk
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Bremsstrahlung of photons emitted during the scattering of $pi^{+}$-mesons off nuclei is studied for the first time. Role of interactions between $pi^{+}$-mesons and nuclei in the formation of the bremsstrahlung emission is analyzed in details. We discover essential contribution of emitted photons from nuclear part of Johnson-Satchler potential to the full spectrum, in contrast to the optical Woods-Saxon potential. We observe unusual essential influence of the nuclear part of both potentials on the spectrum at high photon energies. This phenomenon opens a new experimental way to study and check non-Coulomb and nuclear interactions between pions and nuclei via measurements of the emitted photons. We provide predictions of the bremsstrahlung spectra for pion scattering off $^{44}{rm Ca}$.



rate research

Read More

The charge form factor and weak decay constant of the pion as well as the pion-quark coupling constant in symmetric nuclear matter are explored in the framework of the Nambu--Jona-Lasinio model, where the pion is described as a bound state of dressed quark-antiquark pair obtained by the Bethe-Salpeter equation. For the in-medium current quark properties, we adopt the quark-meson coupling model, which describes successfully many hadron properties in a nuclear medium. The pion decay constant and the pion-quark coupling constant are found to decrease with increasing density as well as the magnitude of the light quark condensate. But the pion mass is found to be insensitive to density up to $1.25$ times the normal nuclear density. The pion charge form factor in the space-like region is also explored and is found to have a similar $Q^2$ dependence as the form factor in vacuum showing $1/Q^2$-behavior in large $Q^2$ region, where $Q^2$ is the negative of the four-momentum transfer squared. The modifications of the charge radius of the charged pion in nuclear matter are then estimated and the root-mean-square radius at the normal nuclear density is predicted to be larger than that in vacuum by about 20%.
We describe a model for pion production off nucleons and coherent pions from nuclei induced by neutrinos in the 1 GeV energy regime. Besides the dominant Delta pole contribution, it takes into account the effect of background terms required by chiral symmetry. Moreover, the model uses a reduced nucleon-to-Delta resonance axial coupling, which leads to coherent pion production cross sections around a factor two smaller than most of the previous theoretical estimates. Nuclear effects like medium corrections on the Delta propagator and final pion distortion are included.
The cross sections for neutrino scattering off the 12C and 16O nuclei are calculated within the framework of the continuum Random Phase Approximation. A model to consider also the final state interactions is developed. Total charge-conserving and charge-exchange cross sections for both electron neutrinos and antineutrinos have been calculated up to projectile energies of 100 MeV. The sensitivity of the cross sections to the residual interaction and to the final state interactions is investigated. A direct comparison between neutrino and electron scattering cross sections calculated under the same kinematic conditions is presented. We found remarkable differences between electromagnetic and weak nuclear responses. The model is applied to describe cross sections of neutrinos produced by muon decay at rest and in supernovae explosions.
We investigate emission of bremsstrahlung photons during scattering of $alpha$-particles off nuclei. For that, we construct bremsstrahlung model for $alpha$-nucleus scattering, where a new formalism for coherent and incoherent bremsstrahlung emissions in elastic scattering and mechanisms in inelastic scattering is added. Basing of this approach, we analyze experimental bremsstrahlung cross-sections in the scattering of $alpha$-particles off the isotope[59]{Co}, isotope[116]{Sn}, isotope[rm nat]{Ag} and isotope[197]{Au} nuclei at 50 MeV of $alpha$-particles beam measured at the Variable Energy Cyclotron Centre, Calcutta. We observe oscillations in the calculated spectra for elastic scattering for each nucleus. But, for isotope[59]{Co}, isotope[116]{Sn} and isotope[rm nat]{Ag} we obtain good agreement between calculated coherent spectrum with incoherent contribution for elastic scattering with experimental data in the full photon energy region. For heavy nucleus isotope[197]{Au} we find that (1) Oscillating behavior of the calculated spectrum of coherent emission in elastic scattering is in disagreement with experimental data, (2) Inclusion of incoherent emission improves description of the data, but summarized spectrum is in satisfactory agreement with the experimental data. To understand unknown modification of wave function for scattering, we add new mechanisms of inelastic scattering to calculations and extract information about unknown new amplitude of such mechanisms from experimental data analysis. This amplitude has maxima at some energies, that characterizes existence of states of the most compact structures (clusters) in nucleus-target. We explain origin of oscillations in the bremsstrahlung spectra for elastic scattering (at first time). New information about coherent and incoherent contributions is extracted for studied reactions.
We study the medium-induced gluon emission from a hard quark jet traversing the dense nuclear matter within the framework of deep inelastic scattering off a large nucleus. We extend the previous work and compute the single gluon emission spectrum including both transverse and longitudinal momentum exchanges between the hard jet parton and the medium constituents. On the other hand, with only transverse scattering and using static scattering centers for the traversed medium, our induced gluon emission spectrum in the soft gluon limit reduces to the Gyulassy-Levai-Vitev one-rescattering-one-emission formula.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا