Do you want to publish a course? Click here

Medium-induced gluon emission via transverse and longitudinal scattering in dense nuclear matter

87   0   0.0 ( 0 )
 Added by Guang-You Qin
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We study the medium-induced gluon emission from a hard quark jet traversing the dense nuclear matter within the framework of deep inelastic scattering off a large nucleus. We extend the previous work and compute the single gluon emission spectrum including both transverse and longitudinal momentum exchanges between the hard jet parton and the medium constituents. On the other hand, with only transverse scattering and using static scattering centers for the traversed medium, our induced gluon emission spectrum in the soft gluon limit reduces to the Gyulassy-Levai-Vitev one-rescattering-one-emission formula.



rate research

Read More

We study the medium-induced gluon emission process experienced by a hard jet parton propagating through the dense nuclear matter in the framework of deep inelastic scattering off a large nucleus. We work beyond the collinear rescattering expansion and the soft gluon emission limit, and derive a closed formula for the medium-induced single gluon emission spectrum from a heavy or light quark jet interacting with the dense nuclear medium via transverse and longitudinal scatterings. Without performing the collinear rescattering expansion, the medium-induced gluon emission spectrum is controlled by the full distribution of the differential elastic scattering rates between the propagating partons and the medium constituents. We further show that if one utilizes heavy static scattering centers for the traversed nuclear matter and takes the soft gluon emission limit, our result can reduce to the first order in opacity Djordjevic-Gyulassy-Levai-Vitev formula.
188 - K. Tsushima 2000
We discuss the effect of changes in meson properties in a nuclear medium on physical observables, notably, $J/Psi$ dissociation on pion and $rho$ meson comovers in relativistic heavy ion collisions, and the prediction of the $omega$-, $eta$- and $eta$-nuclear bound states.
Results for the $pi + N to Lambda, Sigma + K$ reactions in nuclear matter of Ref. nucl-th/0004011 are presented. To evaluate the in-medium modification of the reaction amplitude as a function of the baryonic density we introduce relativistic, mean-field potentials for the initial, final and intermediate mesonic and baryonic states in the resonance model. These vector and scalar potentials were calculated using the quark meson coupling model. Contrary to earlier work which has not allowed for the change of the cross section in medium, we find that the data for kaon production at SIS energies are consistent with a repulsive $K^+$-nucleus potential.
In heavy ion collisions, elliptic flow $v_2$ and radial flow, characterized by event-wise average transverse momentum $[p_{mathrm{T}}]$, are related to the shape and size of the overlap region, which are sensitive to the shape of colliding atomic nuclei. The Pearson correlation coefficient between $v_2$ and $[p_{mathrm{T}}]$, $rho_2$, was found to be particularly sensitive to the quadrupole deformation parameter $beta$ that is traditionally measured in low energy experiments. Built on earlier insight that the prolate deformation $beta>0$ reduces the $rho_2$ in ultra-central collisions (UCC), we show that the prolate deformation $beta<0$ enhances the value of $rho_2$. As $beta>0$ and $beta<0$ are the two extremes of triaxiality, the strength and sign of $v_2^2-[p_{mathrm{T}}]$ correlation can be used to provide valuable information on the triaxiality of the nucleus. Our study provide further arguments for using the hydrodynamic flow as a precision tool to directly image the deformation of the atomic nuclei at extremely short time scale ($<10^{-24}$s).
Heavy mesons in nuclear matter and nuclei are analyzed within different frameworks, paying a special attention to unitarized coupled-channel approaches. Possible experimental signatures of the properties of these mesons in matter are addressed, in particular in connection with the future FAIR facility at GSI.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا