Do you want to publish a course? Click here

Identification of Wearable Devices with Bluetooth

56   0   0.0 ( 0 )
 Added by Hidayet Aksu
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

With wearable devices such as smartwatches on the rise in the consumer electronics market, securing these wearables is vital. However, the current security mechanisms only focus on validating the user not the device itself. Indeed, wearables can be (1) unauthorized wearable devices with correct credentials accessing valuable systems and networks, (2) passive insiders or outsider wearable devices, or (3) information-leaking wearables devices. Fingerprinting via machine learning can provide necessary cyber threat intelligence to address all these cyber attacks. In this work, we introduce a wearable fingerprinting technique focusing on Bluetooth classic protocol, which is a common protocol used by the wearables and other IoT devices. Specifically, we propose a non-intrusive wearable device identification framework which utilizes 20 different Machine Learning (ML) algorithms in the training phase of the classification process and selects the best performing algorithm for the testing phase. Furthermore, we evaluate the performance of proposed wearable fingerprinting technique on real wearable devices, including various off-the-shelf smartwatches. Our evaluation demonstrates the feasibility of the proposed technique to provide reliable cyber threat intelligence. Specifically, our detailed accuracy results show on average 98.5%, 98.3% precision and recall for identifying wearables using the Bluetooth classic protocol.



rate research

Read More

The majority of available wearable devices require communication with Internet servers for data analysis and storage, and rely on a paired smartphone to enable secure communication. However, wearable devices are mostly equipped with WiFi network interfaces, enabling direct communication with the Internet. Secure communication protocols should then run on these wearables itself, yet it is not clear if they can be efficiently supported. In this paper, we show that wearable devices are ready for direct and secure Internet communication by means of experiments with both controlled and Internet servers. We observe that the overall energy consumption and communication delay can be reduced with direct Internet connection via WiFi from wearables compared to using smartphones as relays via Bluetooth. We also show that the additional HTTPS cost caused by TLS handshake and encryption is closely related to number of parallel connections, and has the same relative impact on wearables and smartphones.
Implantable and wearable medical devices (IWMDs) are widely used for the monitoring and therapy of an increasing range of medical conditions. Improvements in medical devices, enabled by advances in low-power processors, more complex firmware, and wireless connectivity, have greatly improved therapeutic outcomes and patients quality-of-life. However, security attacks, malfunctions and sometimes user errors have raised great concerns regarding the safety of IWMDs. In this work, we present a HW/SW (Hardware/Software) framework for improving the safety of IWMDs, wherein a set of safety rules and a rule check mechanism are used to monitor both the extrinsic state (the patients physiological parameters sensed by the IWMD) and the internal state of the IWMD (I/O activities of the microcontroller) to infer unsafe operations that may be triggered by user errors, software bugs, or security attacks. We discuss how this approach can be realized in the context of a artificial pancreas with wireless connectivity and implement a prototype to demonstrate its effectiveness in improving safety at modest overheads.
The coupling of human movement dynamics with the function and design of wearable assistive devices is vital to better understand the interaction between the two. Advanced neuromuscular models and optimal control formulations provide the possibility to study and improve this interaction. In addition, optimal control can also be used to generate predictive simulations that generate novel movements for the human model under varying optimization criterion.
The Internet of Things (IoT) is becoming an indispensable part of everyday life, enabling a variety of emerging services and applications. However, the presence of rogue IoT devices has exposed the IoT to untold risks with severe consequences. The first step in securing the IoT is detecting rogue IoT devices and identifying legitimate ones. Conventional approaches use cryptographic mechanisms to authenticate and verify legitimate devices identities. However, cryptographic protocols are not available in many systems. Meanwhile, these methods are less effective when legitimate devices can be exploited or encryption keys are disclosed. Therefore, non-cryptographic IoT device identification and rogue device detection become efficient solutions to secure existing systems and will provide additional protection to systems with cryptographic protocols. Non-cryptographic approaches require more effort and are not yet adequately investigated. In this paper, we provide a comprehensive survey on machine learning technologies for the identification of IoT devices along with the detection of compromised or falsified ones from the viewpoint of passive surveillance agents or network operators. We classify the IoT device identification and detection into four categories: device-specific pattern recognition, Deep Learning enabled device identification, unsupervised device identification, and abnormal device detection. Meanwhile, we discuss various ML-related enabling technologies for this purpose. These enabling technologies include learning algorithms, feature engineering on network traffic traces and wireless signals, continual learning, and abnormality detection.
Wearable devices are a fast-growing technology with impact on personal healthcare for both society and economy. Due to the widespread of sensors in pervasive and distributed networks, power consumption, processing speed, and system adaptation are vital in future smart wearable devices. The visioning and forecasting of how to bring computation to the edge in smart sensors have already begun, with an aspiration to provide adaptive extreme edge computing. Here, we provide a holistic view of hardware and theoretical solutions towards smart wearable devices that can provide guidance to research in this pervasive computing era. We propose various solutions for biologically plausible models for continual learning in neuromorphic computing technologies for wearable sensors. To envision this concept, we provide a systematic outline in which prospective low power and low latency scenarios of wearable sensors in neuromorphic platforms are expected. We successively describe vital potential landscapes of neuromorphic processors exploiting complementary metal-oxide semiconductors (CMOS) and emerging memory technologies (e.g. memristive devices). Furthermore, we evaluate the requirements for edge computing within wearable devices in terms of footprint, power consumption, latency, and data size. We additionally investigate the challenges beyond neuromorphic computing hardware, algorithms and devices that could impede enhancement of adaptive edge computing in smart wearable devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا