Do you want to publish a course? Click here

Adaptive Extreme Edge Computing for Wearable Devices

68   0   0.0 ( 0 )
 Added by Melika Payvand
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Wearable devices are a fast-growing technology with impact on personal healthcare for both society and economy. Due to the widespread of sensors in pervasive and distributed networks, power consumption, processing speed, and system adaptation are vital in future smart wearable devices. The visioning and forecasting of how to bring computation to the edge in smart sensors have already begun, with an aspiration to provide adaptive extreme edge computing. Here, we provide a holistic view of hardware and theoretical solutions towards smart wearable devices that can provide guidance to research in this pervasive computing era. We propose various solutions for biologically plausible models for continual learning in neuromorphic computing technologies for wearable sensors. To envision this concept, we provide a systematic outline in which prospective low power and low latency scenarios of wearable sensors in neuromorphic platforms are expected. We successively describe vital potential landscapes of neuromorphic processors exploiting complementary metal-oxide semiconductors (CMOS) and emerging memory technologies (e.g. memristive devices). Furthermore, we evaluate the requirements for edge computing within wearable devices in terms of footprint, power consumption, latency, and data size. We additionally investigate the challenges beyond neuromorphic computing hardware, algorithms and devices that could impede enhancement of adaptive edge computing in smart wearable devices.



rate research

Read More

Bio-inspired hardware holds the promise of low-energy, intelligent and highly adaptable computing systems. Applications span from automatic classification for big data management, through unmanned vehicle control, to control for bio-medical prosthesis. However, one of the major challenges of fabricating bio-inspired hardware is building ultra-high density networks out of complex processing units interlinked by tunable connections. Nanometer-scale devices exploiting spin electronics (or spintronics) can be a key technology in this context. In particular, magnetic tunnel junctions are well suited for this purpose because of their multiple tunable functionalities. One such functionality, non-volatile memory, can provide massive embedded memory in unconventional circuits, thus escaping the von-Neumann bottleneck arising when memory and processors are located separately. Other features of spintronic devices that could be beneficial for bio-inspired computing include tunable fast non-linear dynamics, controlled stochasticity, and the ability of single devices to change functions in different operating conditions. Large networks of interacting spintronic nano-devices can have their interactions tuned to induce complex dynamics such as synchronization, chaos, soliton diffusion, phase transitions, criticality, and convergence to multiple metastable states. A number of groups have recently proposed bio-inspired architectures that include one or several types of spintronic nanodevices. In this article we show how spintronics can be used for bio-inspired computing. We review the different approaches that have been proposed, the recent advances in this direction, and the challenges towards fully integrated spintronics-CMOS (Complementary metal - oxide - semiconductor) bio-inspired hardware.
Ferroelectric tunneling junctions (FTJ) are considered to be the intrinsically most energy efficient memristors. In this work, specific electrical features of ferroelectric hafnium-zirconium oxide based FTJ devices are investigated. Moreover, the impact on the design of FTJ-based circuits for edge computing applications is discussed by means of two example circuits.
218 - Andrew W. Stephan , Jiaxi Hu , 2018
We propose a new design for a cellular neural network with spintronic neurons and CMOS-based synapses. Harnessing the magnetoelectric and inverse Rashba-Edelstein effects allows natural emulation of the behavior of an ideal cellular network. This combination of effects offers an increase in speed and efficiency over other spintronic neural networks. A rigorous performance analysis via simulation is provided.
The emergence of resistive non-volatile memories opens the way to highly energy-efficient computation near- or in-memory. However, this type of computation is not compatible with conventional ECC, and has to deal with device unreliability. Inspired by the architecture of animal brains, we present a manufactured differential hybrid CMOS/RRAM memory architecture suitable for neural network implementation that functions without formal ECC. We also show that using low-energy but error-prone programming conditions only slightly reduces network accuracy.
The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا