Do you want to publish a course? Click here

Spin-driven electrical power generation at room temperature

274   0   0.0 ( 0 )
 Added by Martin Bowen
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

To mitigate climate change, our global society is harnessing direct (solar irradiation) and indirect (wind/water flow) sources of renewable electrical power generation. Emerging direct sources include current-producing thermal gradients in thermoelectric materials, while quantum physics-driven processes to convert quantum information into energy have been demonstrated at very low temperatures. The magnetic state of matter, assembled by ordering the electrons quantum spin property, represents a sizeable source of built-in energy. We propose to create a direct source of electrical power at room temperature (RT) by utilizing magnetic energy to harvest thermal fluctuations on paramagnetic (PM) centers. Our spin engine rectifies current fluctuations across the PM centers spin states according to the electron spin by utilizing so-called spinterfaces with high spin polarization. As a rare experimental event, we demonstrate how this path can generate 0.1nW at room temperature across a 20 micron-wide spintronic device called the magnetic tunnel junction, assembled using commonplace Co, C and MgO materials. The presence of this path in our experiment, which also generates very high spintronic performance, is confirmed by analytical and ab-initio calculations. Device downscaling, and the ability for other materials systems than the spinterface to select a transport spin channel at RT widens opportunities for routine device reproduction. The challenging control over PM centers within the tunnel barriers nanotransport path may be addressed using oxide- and organic-based nanojunctions. At present densities in MRAM products, this spin engine could lead to always-on areal power densities well beyond that generated by solar irradiation on earth. Further developing this concept can fundamentally alter our energy-driven societys global economic, social and geopolitical constructs.



rate research

Read More

The ultimate goal of spintronics is achieving electrically controlled coherent manipulation of the electron spin at room temperature to enable devices such as spin field-effect transistors. With conventional materials, coherent spin precession has been observed in the ballistic regime and at low temperatures only. However, the strong spin anisotropy and the valley character of the electronic states in 2D materials provide unique control knobs to manipulate spin precession. Here, by manipulating the anisotropic spin-orbit coupling in bilayer graphene by the proximity effect to WSe$_2$, we achieve coherent spin precession in the absence of an external magnetic field, even in the diffusive regime. Remarkably, the sign of the precessing spin polarization can be tuned by a back gate voltage and by a drift current. Our realization of a spin field-effect transistor at room temperature is a cornerstone for the implementation of energy-efficient spin-based logic.
We report electrical control of the spin polarization of InAs/GaAs self-assembled quantum dots (QDs) at room temperature. This is achieved by electrical injection of spin-polarized electrons from an Fe Schottky contact. The circular polarization of the QD electroluminescence shows that a 5% electron spin polarization is obtained in the InAs QDs at 300 K, which is remarkably insensitive to temperature. This is attributed to suppression of the spin relaxation mechanisms in the QDs due to reduced dimensionality. These results demonstrate that practical regimes of spin-based operation are clearly attainable in solid state semiconductor devices.
392 - Qiushi Guo , Renwen Yu , Cheng Li 2018
Optical excitation and subsequent decay of graphene plasmons can produce a significant increase in charge-carrier temperature. An efficient method to convert this temperature elevation into a measurable electrical signal at room temperature can enable important mid-infrared applications such as thermal sensing and imaging in ubiquitous mobile devices. However, as appealing as this goal might be, it is still unrealized due to the modest thermoelectric coefficient and weak temperature-dependence of carrier transport in graphene. Here, we demonstrate mid-infrared graphene detectors consisting of arrays of plasmonic resonators interconnected by quasi one-dimensional nanoribbons. Localized barriers associated with disorder in the nanoribbons produce a dramatic temperature dependence of carrier transport, thus enabling the electrical detection of plasmon decay in the nearby graphene resonators. We further realize a device with a subwavelength footprint of 5*5 um2 operating at 12.2 um, an external responsivity of 16 mA/W, a low noise-equivalent power of 1.3 nW/Hz1/2 at room temperature, and an operational frequency potentially beyond gigahertz. Importantly, our device is fabricated using large-scale graphene and possesses a simple two-terminal geometry, representing an essential step toward the realization of on-chip graphene mid-infrared detector arrays.
We report on acoustically driven spin resonances in atomic-scale centers in silicon carbide at room temperature. Specifically, we use a surface acoustic wave cavity to selectively address spin transitions with magnetic quantum number differences of $pm$1 and $pm$2 in the absence of external microwave electromagnetic fields. These spin-acoustic resonances reveal a non-trivial dependence on the static magnetic field orientation, which is attributed to the intrinsic symmetry of the acoustic fields combined with the peculiar properties of a half-integer spin system. We develop a microscopic model of the spin-acoustic interaction, which describes our experimental data without fitting parameters. Furthermore, we predict that traveling surface waves lead to a chiral spin-acoustic resonance, which changes upon magnetic field inversion. These results establish silicon carbide as a highly-promising hybrid platform for on-chip spin-optomechanical quantum control enabling engineered interactions at room temperature.
We inject spin-polarized electrons from an Fe/MgO tunnel barrier contact into n-type Ge(001) substrates with electron densities 2e16 < n < 8e17 cm-3, and electrically detect the resulting spin accumulation using three-terminal Hanle measurements. We observe significant spin accumulation in the Ge up to room temperature. We observe precessional dephasing of the spin accumulation (the Hanle effect) in an applied magnetic field for both forward and reverse bias (spin extraction and injection), and determine spin lifetimes and corresponding diffusion lengths for temperatures of 225 K to 300 K. The room temperature spin lifetime increases from {tau}s = 50 ps to 123 ps with decreasing electron concentration, as expected from electron spin resonance work on bulk Ge. The measured spin resistance-area product is in good agreement with values predicted by theory for samples with carrier densities below the metal-insulator transition (MIT), but 100x larger for samples above the MIT. These data demonstrate that the spin accumulation measured occurs in the Ge, although dopant-derived interface or band states may enhance the measured spin voltage above the MIT. We estimate the polarization in the Ge to be on the order of 1%.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا