Do you want to publish a course? Click here

Charge trapping and super-Poissonian noise centers in a cuprate high-temperature superconductor

187   0   0.0 ( 0 )
 Added by Koen Bastiaans
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The electronic properties of cuprate high temperature superconductors in their normal state are very two-dimensional: while transport in the ab plane is perfectly metallic, it is insulating along the c-axis, with ratios between the two exceeding 10^4. This anisotropy has been identified as one of the mysteries of the cuprates early on, and while widely different proposals exist for its microscopic origin, little is known empirically on the microscopic scale. Here, we elucidate the properties of the insulating layers with a newly developed scanning noise spectroscopy technique that can spatially map not only the current but also the current fluctuations in time. We discover atomic-scale noise centers that exhibit MHz current fluctuations 40 times the expectation from Poissonian noise, more than what has been observed in mesoscopic systems. Such behaviour can only happen in highly polarizable insulators and represents strong evidence for trapping of charge in the charge reservoir layers. Our measurements suggest a picture of metallic layers separated by polarizable insulators within a three-dimensional superconducting state.



rate research

Read More

114 - G. Aeppli 1998
Polarized and unpolarized neutron scattering was used to measure the wave vector- and frequency-dependent magnetic fluctuations in the normal state (from the superconducting transition temperature, T_c=35, up to 350 K) of single crystals of La_{1.86}Sr_{0.14}CuO_4. The peaks which dominate the fluctuations have amplitudes that decrease as T^{-2} and widths that increase in proportion to the thermal energy, k_B T (where k_B is Boltzmanns constant), and energy transfer added in quadrature. The nearly singular fluctuations are consistent with a nearby quantum critical point.
145 - V. Hinkov , D. Haug , B. Fauque 2008
Electronic phases with symmetry properties matching those of conventional liquid crystals have recently been discovered in transport experiments on semiconductor heterostructures and metal oxides at milli-Kelvin temperatures. We report the spontaneous onset of a onedimensional, incommensurate modulation of the spin system in the high-temperature superconductor YBa2Cu3O6.45 upon cooling below ~150 K, while static magnetic order is absent above 2 K. The evolution of this modulation with temperature and doping parallels that of the in-plane anisotropy of the resistivity, indicating an electronic nematic phase that is stable over a wide temperature range. The results suggest that soft spin fluctuations are a microscopic route towards electronic liquid crystals, and nematic order can coexist with high-temperature superconductivity in underdoped cuprates.
322 - S. Wakimoto , H. Kimura , K. Ishii 2008
Charge excitations were studied for stipe-ordered 214 compounds, La$_{5/3}$Sr$_{1/3}$NiO$_{4}$ and 1/8-doped La$_{2}$(Ba, Sr)$_{x}$CuO$_{4}$ using resonant inelastic x-ray scattering in hard x-ray regime. We have observed charge excitations at the energy transfer of 1 eV with the momentum transfer corresponding to the charge stripe spatial period both for the diagonal (nikelate) and parallel (cuprates) stripes. These new excitations can be interpreted as a collective stripe excitation or charge excitonic mode to a stripe-related in-gap state.
Recently we have used spectroscopic mapping with the scanning tunneling microscope to probe modulations of the electronic density of states in single crystals of the high temperature superconductor Bi2Sr2CaCu2O8+d (Bi-2212) as a function of temperature [C. V. Parker et al., Nature (London) 468, 677 (2010)]. These measurements showed Cu-O bond-oriented modulations that form below the pseudogap temperature with a temperature-dependent energy dispersion displaying different behaviors in the superconducting and pseudogap states. Here we demonstrate that quasiparticle scattering off impurities does not capture the experimentally observed energy- and temperature-dependence of these modulations. Instead, a model of scattering of quasiparticles from short-range stripe order, with periodicity near four lattice constants (4a), reproduces the experimentally observed energy dispersion of the bond-oriented modulations and its temperature dependence across the superconducting critical temperature, Tc. The present study confirms the existence of short-range stripe order in Bi-2212.
Directly observing a zero energy Majorana state in the vortex core of a chiral superconductor by tunneling spectroscopy requires energy resolution better than the spacing between core states $Delta^2/eF$. We show that nevertheless, its existence can be decisively tested by comparing the temperature broadened tunneling conductance of a vortex with that of an antivortex even at temperatures $T >> Delta^2/eF$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا